Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 52(27): 9337-9345, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37350573

RESUMEN

Copper(II)-nitroxide based Cu(hfac)2LR compounds exhibit unusual magnetic behavior that can be induced by various stimuli. In many aspects, the magnetic phenomena observed in Cu(hfac)2LR are similar to classical spin-crossover behavior. However, these phenomena originate from polynuclear exchange-coupled spin clusters Cu2+-O˙-N< or >N-˙O-Cu2+-O˙-N<. Such peculiarities may result in additional multifunctionality of Cu(hfac)2LR compounds, making them promising materials for spintronic applications. Herein, we investigate the Cu(hfac)2LMeMe material, which demonstrates a three-step temperature-induced magnetostructural transition between high-temperature, low-temperature, and intermediate states, as revealed by magnetometry. Two main steps were resolved using variable-temperature Fourier-transform infrared and Q-band electron paramagnetic resonance (EPR) spectroscopies. The intermediate-temperature states (∼40-90 K) are characterized by the coexistence of two types of copper(II)-nitroxide clusters, corresponding to the low-temperature and high-temperature phases. High-field EPR experiments revealed the effect of partial alignment of Cu(hfac)2LMeMe microcrystals in a strong (>20 T) magnetic field. This effect was used to unveil the structural features of the low-temperature phase of Cu(hfac)2LMeMe, which were inaccessible using single-crystal X-ray diffraction (XRD) technique. In particular, high-field EPR allowed us to determine the relative direction of the Jahn-Teller axes in CuO6 and CuO4N2 units.

2.
Dalton Trans ; 49(18): 5851-5858, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32301949

RESUMEN

Copper(ii) complexes with stable nitroxide radicals are capable of magnetostructural spin-crossover like anomalies induced by external stimuli. Photoswitching in such systems is particularly important; however, retrieving the properties of photoinduced states is challenging and requires development of novel approaches. In this work, we investigate the exchange interactions in metastable photoinduced states of two compounds containing copper(ii)-nitroxide dyads. Using Electron Paramagnetic Resonance (EPR) with photoexcitation we obtain temperature dependence of magnetic susceptibility in the photoinduced state and estimates for the corresponding values of exchange coupling in the studied complexes. The interplay between intra- and inter-cluster exchange couplings is considered and analyzed. The proposed methodology is applicable also to other photoswitchable exchange-coupled systems.

3.
Inorg Chem ; 57(15): 8709-8713, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-29995390

RESUMEN

Q-band electron paramagnetic resonance (EPR) data conclusively demonstrate that the iron and cobalt centers in the solid solution [Fe(bpp)2]0.97[Co(terpy)2]0.03[BF4]2 (bpp = 2,6-dipyrazol-1-ylpyridine) undergo allosteric spin-state switching during light-induced excited-spin-state trapping (LIESST) at 20 K and thermal relaxation around 80 K. EPR of [Cu(terpy)2]2+ and [Cu(bpp)2]2+, doped into the same host lattice, also indicates expansion of the copper coordination sphere during LIESST excitation.

4.
J Magn Reson ; 288: 11-22, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29360045

RESUMEN

Electron Paramagnetic Resonance (EPR) station at the Novosibirsk Free Electron Laser (NovoFEL) user facility is described. It is based on X-band (∼9 GHz) EPR spectrometer and operates in both Continuous Wave (CW) and Time-Resolved (TR) modes, each allowing detection of either direct or indirect influence of high-power NovoFEL light (THz and mid-IR) on the spin system under study. The optics components including two parabolic mirrors, shutters, optical chopper and multimodal waveguide allow the light of NovoFEL to be directly fed into the EPR resonator. Characteristics of the NovoFEL radiation, the transmission and polarization-retaining properties of the waveguide used in EPR experiments are presented. The types of proposed experiments accessible using this setup are sketched. In most practical cases the high-power radiation applied to the sample induces its rapid temperature increase (T-jump), which is best visible in TR mode. Although such influence is a by-product of THz radiation, this thermal effect is controllable and can deliberately be used to induce and measure transient signals of arbitrary samples. The advantage of tunable THz radiation is the absence of photo-induced processes in the sample and its high penetration ability, allowing fast heating of a large portion of virtually any sample and inducing intense transients. Such T-jump TR EPR spectroscopy with THz pulses has been previewed for the two test samples, being a useful supplement for the main goals of the created setup.

5.
Inorg Chem ; 56(19): 11729-11737, 2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-28933835

RESUMEN

Similar to spin-crossover (SCO) compounds, spin states of copper(II)-nitroxide based molecular magnets can be switched by various external stimuli including temperature and light. Although photoswitching and reverse relaxation of nitroxide-copper(II)-nitroxide triads were investigated in some detail, similar study for copper(II)-nitroxide spin pairs was still missing. In this work we address photoswitching and relaxation phenomena in exchange-coupled spin pairs of this family of molecular magnets. Using electron paramagnetic resonance (EPR) spectroscopy with photoexcitation, we demonstrate that compared to triad-containing compounds the photoinduced weakly coupled spin (WS) states of copper(II)-nitroxide pairs are remarkably more stable at cryogenic temperatures and relax to the ground strongly coupled spin (SS) states on the scale of days. The structural changes between SS and WS states, e.g., differences in Cu-Onitroxide distances, are much more pronounced for spin pairs than for spin triads in most of the studied copper(II)-nitroxide based molecular magnets. This results in higher energy barrier between WS and SS states of spin pairs and governs higher stability of their photoinduced WS states. Therefore, the longer-lived photoinduced states in copper(II)-nitroxide molecular magnets should be searched within the compounds experiencing largest structural changes upon thermal spin transition. This advancement in understanding of LIESST-like phenomena in copper(II)-nitroxide molecular magnets allows us to propose them as interesting playgrounds for benchmarking the basic factors governing the stability of photoinduced states in other SCO and SCO-like photoswitchable systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...