Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(7): e11386, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38962018

RESUMEN

Tardigrades are omnipresent microfauna with scarce record on their ecology in soils. Here, we investigated soil inhabiting tardigrade communities in five contrasting polar habitats, evaluating their abundance, diversity, species richness, and species composition. Moreover, we measured selected soil physico-chemical properties to find the drivers of tardigrade distribution among these habitats. In spite of reported tardigrade viability in extreme conditions, glacier forelands represented a habitat almost devoid of tardigrades. Even dry and wet tundra with soil developing for over more than 10 000 years held low abundances compared to usual numbers of tardigrades in temperate habitats. Polar habitats also differ in species composition, with Diaforobiotus islandicus being typical species for dry and Hypsibius exemplaris for wet tundra. Overall, tardigrade abundance was affected by the content of nutrients as well as physical properties of soil, i.e. content of total nitrogen (TN), total organic carbon (TOC), stoniness, soil texture and the water holding capacity (WHC). While diversity and species composition were significantly related to soil physical properties such as the bulk density (BD), soil texture, stoniness, and WHC. Physical structure of environment was, therefore, an important predictor of tardigrade distribution in polar habitats. Since many studies failed to identify significant determinants of tardigrade distribution, we encourage scientists to include physical properties of tardigrade habitats as explanatory variables in their studies.

2.
Sci Total Environ ; 861: 160659, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36473654

RESUMEN

The predicted global increase in the frequency, severity, and intensity of forest fires includes Central Europe, which is not currently considered as a wildfire hotspot. Because of this, a detailed knowledge of long-term post-fire forest floor succession is essential for understanding the role of wildfires in Central European temperate forests. In this study, we used a space-for-time substitution approach and exploited a unique opportunity to observe successional changes in the physical, chemical, and microbial properties of the forest floor in coniferous forest stands on a chronosequence up to 110 years after fire. In addition, we assessed whether the depletion of organic matter (OM) and input of pyrogenic carbon (pyC) have significant effects on the post-fire forest floor succession. The bulk density (+174 %), pH (+4 %), and dissolved phosphorus content (+500 %) increased, whereas the water holding capacity (-51 %), content of total organic carbon and total nitrogen (-50 %), total phosphorus (-40 %), dissolved organic carbon (-23 %), microbial respiration and biomass (-60 %), and the abundance of fungi (-65 %) and bacteria (-45 %) decreased shortly after the fire event and then gradually decreased or increased, respectively, relative to the pre-disturbance state. The post-fire forest floor succession was largely dependent on changes in the OM content rather than the pyC content, and thus was dependent on vegetation recovery. The time needed to recover to the pre-disturbance state was <110 years for physical and chemical properties and < 45 years for microbial properties. These times closely correspond to previous studies focusing on the recovery of forest floor properties in different climate zones, suggesting that the times needed for forest vegetation and forest floor properties to recover to the pre-disturbance state are similar across climate zones.


Asunto(s)
Incendios , Incendios Forestales , Carbono , Bosques , Biomasa
3.
Biol Rev Camb Philos Soc ; 97(3): 1057-1117, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35060265

RESUMEN

Soil organisms drive major ecosystem functions by mineralising carbon and releasing nutrients during decomposition processes, which supports plant growth, aboveground biodiversity and, ultimately, human nutrition. Soil ecologists often operate with functional groups to infer the effects of individual taxa on ecosystem functions and services. Simultaneous assessment of the functional roles of multiple taxa is possible using food-web reconstructions, but our knowledge of the feeding habits of many taxa is insufficient and often based on limited evidence. Over the last two decades, molecular, biochemical and isotopic tools have improved our understanding of the feeding habits of various soil organisms, yet this knowledge is still to be synthesised into a common functional framework. Here, we provide a comprehensive review of the feeding habits of consumers in soil, including protists, micro-, meso- and macrofauna (invertebrates), and soil-associated vertebrates. We have integrated existing functional group classifications with findings gained with novel methods and compiled an overarching classification across taxa focusing on key universal traits such as food resource preferences, body masses, microhabitat specialisation, protection and hunting mechanisms. Our summary highlights various strands of evidence that many functional groups commonly used in soil ecology and food-web models are feeding on multiple types of food resources. In many cases, omnivory is observed down to the species level of taxonomic resolution, challenging realism of traditional soil food-web models based on distinct resource-based energy channels. Novel methods, such as stable isotope, fatty acid and DNA gut content analyses, have revealed previously hidden facets of trophic relationships of soil consumers, such as food assimilation, multichannel feeding across trophic levels, hidden trophic niche differentiation and the importance of alternative food/prey, as well as energy transfers across ecosystem compartments. Wider adoption of such tools and the development of open interoperable platforms that assemble morphological, ecological and trophic data as traits of soil taxa will enable the refinement and expansion of the multifunctional classification of consumers in soil. The compiled multifunctional classification of soil-associated consumers will serve as a reference for ecologists working with biodiversity changes and biodiversity-ecosystem functioning relationships, making soil food-web research more accessible and reproducible.


Asunto(s)
Ecosistema , Suelo , Animales , Cadena Alimentaria , Hábitos , Humanos , Vertebrados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA