Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37570115

RESUMEN

This research utilizes Ultrasonic Guided Waves (UGW) to inspect corrosion-type defects in steel pipe walls, providing a solution for hard-to-reach areas typically inaccessible by traditional non-destructive testing (NDT) methods. Fundamental helical UGW modes are used, allowing the detection of defects anywhere on the pipe's circumference using a limited number of transducers and measurements on the upper side of the pipe. Finite element (FE) modeling and experiments investigated generating and receiving UGW helical waves and their propagation through varying corrosion-type defects. Defect detection is based on phase delay differences in the helical wave's signal amplitude peaks between defective and defect-free regions. Phase delay variations were noted for the different depths and spatial dimensions of the defects. These results highlight the phase delay method's potential for NDT pipeline inspection.

2.
Sensors (Basel) ; 23(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37571462

RESUMEN

In this study, a new method for determining the elastic constants of isotropic plates using Lamb wave fundamental modes is presented. This method solves the inverse problem, where the elastic constants (Young's modulus and Poisson's ratio) of the plate were estimated by measuring the phase velocities of the Lamb wave using the Rayleigh-Lamb equations to find the solution and determining the phase velocities of the A0 and S0 modes using a new method. The suitability of the proposed method for determining the elastic constants was evaluated using simulated and experimental signals propagating on an aluminum plate. The theoretical modeling on the aluminum 7075-T6 plate shows that the proposed method allows the determination of the Poisson ratio with a relative error not exceeding 2% and Young's modulus with a relative error not exceeding 0.5%. The experimental measurements of an aluminum plate of known thickness (2 mm) and density (2685 kg/m3) confirmed the suitability of the proposed method for the measurements of elastic constants. In the proposed method, the processing of ultrasonic signals can be performed in real-time, and the values of the elastic constants can be obtained immediately after scanning the required distance.

3.
Sensors (Basel) ; 22(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36146100

RESUMEN

The 2D-FFT is described as a traditional method for signal processing and analysis. Due to the possibility to determine the time and frequency (t,f) domains, such a method has a wide application in various industrial fields. Using that method, the obtained results are presented in images only; thus, for the extraction of quantitative values of phase velocities, additional algorithms should be used. In this work, the 2D-FFT method is presented, which is based on peak detection of the spectrum magnitude at particular frequencies for obtaining the quantitative expressions. The radiofrequency signals of ULWs (ultrasonic Lamb waves) were used for the accuracy evaluation of the method. An uncertainty evaluation was conducted to guarantee the metrological traceability of measurement results and ensure that they are accurate and reliable. Mathematical and experimental verifications were conducted by using signals of Lamb waves propagating in the aluminum plate. The obtained mean relative error of 0.12% for the A0 mode (160 kHz) and 0.05% for the S0 mode (700 kHz) during the mathematical verification indicated that the proposed method is particularly suitable for evaluating the phase-velocity dispersion in clearly expressed dispersion zones. The uncertainty analysis showed that the plate thickness, the mathematical modeling, and the step of the scanner have a significant impact on the estimated uncertainty of the phase velocity for the A0 mode. Those components of uncertainty prevail and make about ~92% of the total standard uncertainty in a clearly expressed dispersion range. The S0 mode analysis in the non-dispersion zone indicates that the repeatability of velocity variations, fluctuations of the frequency of Lamb waves, and the scanning step of the scanner influence significantly the combined uncertainty and represent 98% of the total uncertainty.

4.
Materials (Basel) ; 15(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35591310

RESUMEN

Determining Lamb wave dispersion curves when measuring phase and group velocity values at a fixed frequency is now a common and relevant task. In most cases, in order to solve such a problem, it is necessary to know the exact properties of the material, particularly its thickness. In experimental methods, Lamb wave parameters are evaluated directly from the test materials. This paper proposes a new and simple experimental algorithm for A0 mode group and phase velocity determination based on signal filtering and zero-crossing estimating. The main idea is to capture the zero-crossing instances of the signals closest to the signal envelope peaks and use these time instances to determine the phase and group velocities. The reliability of the proposed method was evaluated using simulated and experimental signals propagating in an aluminum plate. Theoretical modeling has shown that the proposed method enables the calculation of the A0 mode group and phase velocities with a mean relative error of less than 0.7%. An accuracy of 0.8% was observed during the experimental measurements.

5.
Materials (Basel) ; 14(22)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34832389

RESUMEN

The possibilities of an effective method of two adjacent signals are investigated for the evaluation of Lamb waves phase velocity dispersion in objects of different types, namely polyvinyl chloride (PVC) film and wind turbine blade (WTB). A new algorithm based on peaks of spectrum magnitude is presented and used for the comparison of the results. To use the presented method, the wavelength-dependent parameter is proposed to determine the optimal distance range, which is necessary in selecting two signals for analysis. It is determined that, in the range of 0.17-0.5 wavelength where δcph is not higher than 5%, it is appropriate to use in the case of an A0 mode in PVC film sample. The smallest error of 1.2%, in the distance greater than 1.5 wavelengths, is obtained in the case of the S0 mode. Using the method of two signals analysis for PVC sample, the phase velocity dispersion curve of the A0 mode is reconstructed using selected distances x1 = 70 mm and x2 = 70.5 mm between two spatial positions of a receiving transducer with a mean relative error δcph=2.8%, and for S0 mode, x1 = 61 mm and x2 = 79.7 mm with δcph=0.99%. In the case of the WTB sample, the range of 0.1-0.39 wavelength, where δcph is not higher than 3%, is determined as the optimal distance range between two adjacent signals. The phase velocity dispersion curve of the A0 mode is reconstructed in two frequency ranges: first, using selected distances x1 = 225 mm and x2 = 231 mm with mean relative error δcph=0.3%; and second, x1 = 225 mm and x2 = 237 mm with δcph=1.3%.

6.
Sensors (Basel) ; 21(20)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34695992

RESUMEN

Ultrasonic guided waves are already used for material characterization. The advantage of these waves is that they propagate in the plane of a plate and their propagation characteristics are sensitive to properties of the material. The objective of this research was to develop an ultrasonic method that could be used to measure the properties of thin plastic polyvinylchloride films (PVC). The proposed method exploits two fundamental Lamb wave modes, A0 and S0, for measurement of a thin film thickness and Young's modulus. The Young's modulus is found from the measured phased velocity of the S0 mode and the film thickness from the velocities of both A0 and S0 modes. By using the proposed semi-contactless measurement algorithm, the Young's modulus and thickness of different thickness (150 µm and 200 µm) PVC films were measured. The uncertainty of thickness measurements of the thinner 150 µm PVC film is 2% and the thicker 200 µm PVC film is 3.9%.

7.
Sensors (Basel) ; 21(14)2021 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-34300622

RESUMEN

The reliability of the wind turbine blade (WTB) evaluation using a new criterion is presented in the work. Variation of the ultrasonic guided waves (UGW) phase velocity is proposed to be used as a new criterion for defect detection. Based on an intermediate value between the maximum and minimum values, the calculation of the phase velocity threshold is used for defect detection, location and sizing. The operation of the proposed technique is verified using simulation and experimental studies. The artificially milled defect having a diameter of 81 mm on the segment of WTB is used for verification of the proposed technique. After the application of the proposed evaluation technique for analysis of the simulated B-scan image, the coordinates of defect edges have been estimated with relative errors of 3.7% and 3%, respectively. The size of the defect was estimated with a relative error of 2.7%. In the case of an experimentally measured B-scan image, the coordinates of defect edges have been estimated with relative errors of 12.5% and 3.9%, respectively. The size of the defect was estimated with a relative error of 10%. The comparative results obtained by modelling and experiment show the suitability of the proposed new criterion to be used for the defect detection tasks solving.

8.
Materials (Basel) ; 13(7)2020 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-32260394

RESUMEN

Our previous studies have shown that the application of the proposed technique of a dual focused ultrasonic beam in two orthogonal cross-sections in passive (elevation) and active (azimuth) apertures of linear ultrasonic phased array transducer (ULPAT) enhances the 3D spatial resolution in the case of the inspection of conventional defects (flat bottom holes) or measurement of thickness of multi-layered metal composites. The objective of this work is to apply the proposed technique to enhance the spatial resolution of the ULPAT in the cases of detection and sizing demonstration of internal defects possessing spatially complex geometry, and during the inspection of defective multi-layered thin composite components (e.g., GLARE) of the aircraft fuselage. The specially prepared aluminium specimen possessing an internal defect of complicated geometry (crescent-shaped) was investigated. The simulation results and experiments demonstrate the resolution enhancement, higher amplitude of the reflections (e.g., 2.5 times or +8 dB) and spatial improvement in the defect detection even in the case of the non-perpendicular incidence of ultrasonic waves to the complex geometry surface of the internal defect. During the experiments, the multi-layered GFRP-metal based composite sample GLARE 3-3/2 was investigated in the case of the single-side access to the surface of the sample. The internal artificial delamination type defect of 25 mm was detected with a higher accuracy. Compared to the limitations of conventional ULPAT, the relative error (32%) (at the -6 dB level) of lateral defect dimensions estimation was completely reduced.

9.
Materials (Basel) ; 12(10)2019 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-31117182

RESUMEN

The ultrasonic testing technique using Lamb waves is widely used for the non-destructive testing and evaluation of various structures. For air-coupled excitation and the reception of A0 mode Lamb waves, leaky guided waves are usually exploited. However, at low frequencies (<100 kHz), the velocity of this mode in plastic and composite materials can become slower than the ultrasound velocity in air, and its propagation in films is accompanied only by an evanescent wave in air. To date, the information about the attenuation of the slow A0 mode is very contradictory. Therefore, the objective of this investigation was the measurement of the attenuation of the slow A0 mode in thin plastic films. The measurement of the attenuation of normal displacements of the film caused by a propagating slow A0 mode is discussed. The normal displacements of the film at different distances from the source were measured by a laser interferometer. In order to reduce diffraction errors, the measurement method based on the excitation of cylindrical but not plane waves was proposed. The slow A0 mode was excited in the polyvinylchloride film by a dry contact type ultrasonic transducer made of high-efficiency PMN-32%PT strip-like piezoelectric crystal. It was found that that the attenuation of the slow A0 mode in PVC film at the frequency of 44 kHz is 2 dB/cm. The obtained results can be useful for the development of quality control methods for plastic films.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...