Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 236: 123878, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36894057

RESUMEN

Recently, the number of people suffering from visual loss due to eye diseases is increasing rapidly around the world. However, due to the severe donor shortage and the immune response, corneal replacement is needed. Gellan gum (GG) is biocompatible and widely used for cell delivery or drug delivery, but its strength is not suitable for the corneal substitute. In this study, a GM hydrogel was prepared by blending methacrylated gellan gum with GG (GM) to give suitable mechanical properties to the corneal tissue. In addition, lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP), a crosslinking initiator, was added to the GM hydrogel. After the photo-crosslinking treatment, it was named GM/LAP hydrogel. GM and GM/LAP hydrogels were analyzed for physicochemical properties, mechanical characterization, and transparency tests to confirm their applicability as carriers for corneal endothelial cells (CEnCs). Also, in vitro studies were performed with cell viability tests, cell proliferation tests, cell morphology, cell-matrix remodeling analysis, and gene expression evaluation. The compressive strength of the GM/LAP hydrogel was improved compared to the GM hydrogel. The GM/LAP hydrogel showed excellent cell viability, proliferation, and cornea-specific gene expression than the GM hydrogel. Crosslinking-improved GM/LAP hydrogel can be applied as a promising cell carrier in corneal tissue engineering.


Asunto(s)
Células Endoteliales , Hidrogeles , Humanos , Hidrogeles/farmacología , Hidrogeles/química , Polisacáridos Bacterianos/farmacología , Polisacáridos Bacterianos/química , Ingeniería de Tejidos
2.
Molecules ; 27(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36080277

RESUMEN

Cell therapies for age-related macular degeneration (AMD) treatment have been developed by integrating hydrogel-based biomaterials. Until now, cell activity has been observed only in terms of the modulus of the hydrogel. In addition, cell behavior has only been observed in the 2D environment of the hydrogel and the 3D matrix. As time-dependent stress relaxation is considered a significant mechanical cue for the control of cellular activities, it is important to optimize hydrogels for retinal tissue engineering (TE) by applying this viewpoint. Herein, a gellan Gum (GG)/Hyaluronic acid (HA) hydrogel was fabricated using a facile physical crosslinking method. The physicochemical and mechanical properties were controlled by forming a different composition of GG and HA. The characterization was performed by conducting a mass swelling study, a sol fraction study, a weight loss test, a viscosity test, an injection force study, a compression test, and a stress relaxation analysis. The biological activity of the cells encapsulated in 3D constructs was evaluated by conducting a morphological study, a proliferation test, a live/dead analysis, histology, immunofluorescence staining, and a gene expression study to determine the most appropriate material for retinal TE biomaterial. Hydrogels with moderate amounts of HA showed improved physicochemical and mechanical properties suitable for injection into the retina. Moreover, the time-dependent stress relaxation property of the GG/HA hydrogel was enhanced when the appropriate amount of HA was loaded. In addition, the cellular compatibility of the GG/HA hydrogel in in vitro experiments was significantly improved in the fast-relaxing hydrogel. Overall, these results demonstrate the remarkable potential of GG/HA hydrogel as an injectable hydrogel for retinal TE and the importance of the stress relaxation property when designing retinal TE hydrogels. Therefore, we believe that GG/HA hydrogel is a prospective candidate for retinal TE biomaterial.


Asunto(s)
Ácido Hialurónico , Hidrogeles , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Células Epiteliales , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/farmacología , Retina , Pigmentos Retinianos , Ingeniería de Tejidos
3.
J Biomater Sci Polym Ed ; 33(8): 1025-1042, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35118913

RESUMEN

Herein, a facile macro- and microporous polycaprolactone/duck's feet collagen scaffold (PCL/DC) was fabricated and characterized to confirm its applicability in bone tissue engineering. A biomimetic scaffold for bone tissue engineering and regeneration for bone defects is an important element. PCL is a widely applied biomaterial for bone tissue engineering due to its biocompatibility and biodegradability. However, the high hydrophobicity and low cell attachment site properties of PCL lead to an insufficient microenvironment in designing a scaffold. Collagen is a nature-derived biomaterial that is widely used in tissue engineering and has excellent biocompatibility, mechanical properties, and cell attachment moieties. Among the resources from which collagen can be obtained, DC contains a high amount of collagen type I (COL1), is biocompatible, and is cost-effective. In this study, the scaffolds were fabricated by blending DC with PCL in various ratios and applied non-solvent-induced phase separation (NIPS) and thermal-induced phase separation (TIPS) (N-TIPS), solvent casting and particulate leaching (SCPL), and gas foaming method to fabricate macro- and microporous structure. The characterization of the fabricated scaffolds was carried out by morphological analysis, bioactivity test, physicochemical analysis, and mechanical test. In vitro study was carried out by viability test, morphology observation, and gene expression. The results showed that the incorporation of DC enhances the physicochemical and mechanical properties of the scaffolds. Also, a large amount of bone mimetic apatite was formed according to the DC content in the bioactivity test. The in vitro study showed that the PCL/DC scaffold is biocompatible and the existence of apatite and DC formed a favorable microenvironment for cell proliferation and differentiation. Overall, the novel porous PCL/DC scaffold can be a promising biomaterial model for bone tissue engineering and regeneration.


Asunto(s)
Osteogénesis , Ingeniería de Tejidos , Animales , Apatitas , Materiales Biocompatibles/química , Proliferación Celular , Colágeno/química , Patos , Poliésteres/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...