Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787801

RESUMEN

We present pulsed electron paramagnetic resonance (EPR) studies on three La(II) complexes, [K(2.2.2-cryptand)][La(Cp')3] (1), [K(2.2.2-cryptand)][La(Cp″)3] (2), and [K(2.2.2-cryptand)][La(Cptt)3] (3), which feature cyclopentadienyl derivatives as ligands [Cp' = C5H4SiMe3; Cp″ = C5H3(SiMe3)2; Cptt = C5H3(CMe3)2] and display a C3 symmetry. Long spin-lattice relaxation (T1) and phase memory (Tm) times are observed for all three compounds, but with significant variation in T1 among 1-3, with 3 being the slowest relaxing due to higher s-character of the SOMO. The dephasing times can be extended by more than an order of magnitude via dynamical decoupling experiments using a Carr-Purcell-Meiboom-Gill (CPMG) sequence, reaching 161 µs (5 K) for 3. Coherent spin manipulation is performed by the observation of Rabi quantum oscillations up to 80 K in this nuclear spin-rich environment (1H, 13C, and 29Si). The high nuclear spin of 139La (I = 7/2), and the ability to coherently manipulate all eight hyperfine transitions, makes these molecules promising candidates for application as qudits (multilevel quantum systems featuring d quantum states; d >2) for performing quantum operations within a single molecule. Application of HYSCORE techniques allows us to quantify the electron spin density at ligand nuclei and interrogate the role of functional groups to the electron spin relaxation properties.

2.
Inorg Chem ; 63(21): 9588-9601, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38557081

RESUMEN

We introduce the boryloxide ligand {(HCNDipp)2BO}- (NBODipp, Dipp = 2,6-di-isopropylphenyl) to actinide chemistry. Protonolysis of [U{N(SiMe3)2}3] with 3 equiv of NBODippH produced the uranium(III) tris(boryloxide) complex [U(NBODipp)3] (1). In contrast, treatment of UCl4 with 3 equiv of NBODippK in THF at room temperature or reflux conditions produced only [U(NBODipp)2(Cl)2(THF)2] (2) with 1 equiv of NBODippK remaining unreacted. However, refluxing the mixture of 2 and unreacted NBODippK in toluene instead of THF afforded the target complex [U(NBODipp)3(Cl)(THF)] (3). Two-electron oxidation of 1 with AdN3 (Ad = 1-adamantyl) afforded the uranium(V)-imido complex [U(NBODipp)3(NAd)] (4). The solid-state structure of 1 reveals a uranium-arene bonding motif, and structural, spectroscopic, and DFT calculations all suggest modest uranium-arene δ-back-bonding with approximately equal donation into the arene π4 and π5 δ-symmetry π* molecular orbitals. Complex 4 exhibits a short uranium(V)-imido distance, and computational modeling enabled its electronic structure to be compared to related uranium-imido and uranium-oxo complexes, revealing a substantial 5f-orbital crystal field splitting and extensive mixing of 5f |ml,ms⟩ states and mj projections. Complexes 1-4 have been variously characterized by single-crystal X-ray diffraction, 1H NMR, IR, UV/vis/NIR, and EPR spectroscopies, SQUID magnetometry, elemental analysis, and CONDON, F-shell, DFT, NLMO, and QTAIM crystal field and quantum chemical calculations.

3.
Chem Sci ; 15(8): 3003-3010, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38404384

RESUMEN

We examine lanthanide (Ln)-ligand bonding in a family of early Ln3+ complexes [Ln(Cptt)3] (1-Ln, Ln = La, Ce, Nd, Sm; Cptt = C5H3tBu2-1,3) by pulsed electron paramagnetic resonance (EPR) methods, and provide the first characterization of 1-La and 1-Nd by single crystal XRD, multinuclear NMR, IR and UV/Vis/NIR spectroscopy. We measure electron spin T1 and Tm relaxation times of 12 and 0.2 µs (1-Nd), 89 and 1 µs (1-Ce) and 150 and 1.7 µs (1-Sm), respectively, at 5 K: the T1 relaxation of 1-Nd is more than 102 times faster than its valence isoelectronic uranium analogue. 13C and 1H hyperfine sublevel correlation (HYSCORE) spectroscopy reveals that the extent of covalency is negligible in these Ln compounds, with much smaller hyperfine interactions than observed for equivalent actinide (Th and U) complexes. This is corroborated by ab initio calculations, confirming the predominant electrostatic nature of the metal-ligand bonding in these complexes.

4.
Adv Sci (Weinh) ; 11(1): e2305542, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37964415

RESUMEN

MFM-520(Zn) confines dimers of NO2 with a high adsorption of 4.52 mmol g-1 at 1 bar at 298 K. The synthesis and the incommensurate structure of Cu-doped MFM-520(Zn) are reported. The introduction of paramagnetic Cu2+ sites allows investigation of the electronic and geometric structure of metal site by in situ electron paramagnetic resonance (EPR) spectroscopy upon adsorption of NO2 . By combining continuous wave and electron-nuclear double resonance spectroscopy, an unusual reverse Berry distorted coordination geometry of the Cu2+ centers is observed. Interestingly, Cu-doped MFM-520(Zn0.95 Cu0.05 ) shows enhanced adsorption of NO2 of 5.02 mmol g-1 at 1 bar at 298 K. Whereas MFM-520(Zn) confines adsorbed NO2 as N2 O4 , the presence of monomeric NO2 at low temperature suggests that doping with Cu2+ centers into the framework plays an important role in tuning the dimerization of NO2 molecules in the pore via the formation of specific host-guest interactions.

5.
Angew Chem Int Ed Engl ; 62(48): e202306267, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37783657

RESUMEN

Deuterium labelling of organic compounds is an important process in chemistry. We report the first example of photocatalytic dehalogenative deuteration of both arylhalides and alkylhalides (40 substrates) over a metal-organic framework, MFM-300(Cr), using CD3 CN as the deuterium source at room temperature. MFM-300(Cr) catalyses high deuterium incorporation and shows excellent tolerance to various functional groups. Synchrotron X-ray powder diffraction reveals the activation of halogenated substrates via confined binding within MFM-300(Cr). In situ electron paramagnetic resonance spectroscopy confirms the formation of carbon-based radicals as intermediates and reveals the reaction pathway. This protocol removes the use of precious-metal catalysts from state-of-the-art processes based upon direct hydrogen isotope exchange and shows high photocatalytic stability, thus enabling multiple catalytic cycles.

6.
J Am Chem Soc ; 145(38): 20792-20800, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37722104

RESUMEN

Conversion of methane (CH4) to ethylene (C2H4) and/or acetylene (C2H2) enables routes to a wide range of products directly from natural gas. However, high reaction temperatures and pressures are often required to activate and convert CH4 controllably, and separating C2+ products from unreacted CH4 can be challenging. Here, we report the direct conversion of CH4 to C2H4 and C2H2 driven by non-thermal plasma under ambient (25 °C and 1 atm) and flow conditions over a metal-organic framework material, MFM-300(Fe). The selectivity for the formation of C2H4 and C2H2 reaches 96% with a high time yield of 334 µmol gcat-1 h-1. At a conversion of 10%, the selectivity to C2+ hydrocarbons and time yield exceed 98% and 2056 µmol gcat-1 h-1, respectively, representing a new benchmark for conversion of CH4. In situ neutron powder diffraction, inelastic neutron scattering and solid-state nuclear magnetic resonance, electron paramagnetic resonance (EPR), and diffuse reflectance infrared Fourier transform spectroscopies, coupled with modeling studies, reveal the crucial role of Fe-O(H)-Fe sites in activating CH4 and stabilizing reaction intermediates via the formation of an Fe-O(CH3)-Fe adduct. In addition, a cascade fixed-bed system has been developed to achieve online separation of C2H4 and C2H2 from unreacted CH4 for direct use. Integrating the processes of CH4 activation, conversion, and product separation within one system opens a new avenue for natural gas utility, bridging the gap between fundamental studies and practical applications in this area.

7.
ACS Catal ; 13(13): 8574-8587, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37441233

RESUMEN

Glucose is a key intermediate in cellulose photoreforming for H2 production. This work presents a mechanistic investigation of glucose photoreforming over TiO2 and Pt/m-TiO2 catalysts. Analysis of the intermediates formed in the process confirmed the α-scission mechanism of glucose oxidation forming arabinose (Cn-1 sugar) and formic acid in the initial oxidation step. The selectivity to sugar products and formic acid differed over Pt/TiO2 and TiO2, with Pt/TiO2 showing the lower selectivity to formic acid due to enhanced adsorption/conversion of formic acid over Pt/TiO2. In situ ATR-IR spectroscopy of glucose photoreforming showed the presence of molecular formic acid and formate on the surface of both catalysts at low glucose conversions, suggesting that formic acid oxidation could dominate surface reactions in glucose photoreforming. Further in situ ATR-IR of formic acid photoreforming showed Pt-TiO2 interfacial sites to be key for formic acid oxidation as TiO2 was unable to convert adsorbed formic acid/formate. Isotopic studies of the photoreforming of formic acid in D2O (with different concentrations) showed that the source of the protons (to form H2 at Pt sites) was determined by the relative surface coverage of adsorbed water and formic acid.

8.
Adv Mater ; 35(38): e2302114, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37289574

RESUMEN

General-purpose quantum computation and quantum simulation require multi-qubit architectures with precisely defined, robust interqubit interactions, coupled with local addressability. This is an unsolved challenge, primarily due to scalability issues. These issues often derive from poor control over interqubit interactions. Molecular systems are promising materials for the realization of large-scale quantum architectures, due to their high degree of positionability and the possibility to precisely tailor interqubit interactions. The simplest quantum architecture is the two-qubit system, with which quantum gate operations can be implemented. To be viable, a two-qubit system must possess long coherence times, the interqubit interaction must be well defined and the two qubits must also be addressable individually within the same quantum manipulation sequence. Here results are presented on the investigation of the spin dynamics of chlorinated triphenylmethyl organic radicals, in particular the perchlorotriphenylmethyl (PTM) radical, a mono-functionalized PTM, and a biradical PTM dimer. Extraordinarily long ensemble coherence times up to 148 µs are found at all temperatures below 100 K. Two-qubit and, importantly, individual qubit addressability in the biradical system are demonstrated. These results underline the potential of molecular materials for the development of quantum architectures.

9.
Mater Adv ; 4(8): 1941-1948, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37113466

RESUMEN

Electrochemcial reduction of CO2 to multi-carbon (C2+) products is an important but challenging task. Here, we report the control of structural evolution of two porous Cu(ii)-based materials (HKUST-1 and CuMOP, MOP = metal-organic polyhedra) under electrochemical conditions by adsorption of 7,7,8,8-tetracyanoquinodimethane (TNCQ) as an additional electron acceptor. The formation of Cu(i) and Cu(0) species during the structural evolution has been confirmed and analysed by powder X-ray diffraction, and by EPR, Raman, XPS, IR and UV-vis spectroscopies. An electrode decorated with evolved TCNQ@CuMOP shows a selectivity of 68% for C2+ products with a total current density of 268 mA cm-2 and faradaic efficiency of 37% for electrochemcial reduction of CO2 in 1 M aqueous KOH electrolyte at -2.27 V vs. RHE (reversible hydrogen electrode). In situ electron paramagnetic resonance spectroscopy reveals the presence of carbon-centred radicals as key reaction intermediates. This study demonstrates the positive impact of additional electron acceptors on the structural evolution of Cu(ii)-based porous materials to promote the electroreduction of CO2 to C2+ products.

10.
Angew Chem Int Ed Engl ; 62(28): e202302602, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37027005

RESUMEN

We report the modulation of reactivity of nitrogen dioxide (NO2 ) in a charged metal-organic framework (MOF) material, MFM-305-CH3 in which unbound N-centres are methylated and the cationic charge counter-balanced by Cl- ions in the pores. Uptake of NO2 into MFM-305-CH3 leads to reaction between NO2 and Cl- to give nitrosyl chloride (NOCl) and NO3 - anions. A high dynamic uptake of 6.58 mmol g-1 at 298 K is observed for MFM-305-CH3 as measured using a flow of 500 ppm NO2 in He. In contrast, the analogous neutral material, MFM-305, shows a much lower uptake of 2.38 mmol g-1 . The binding domains and reactivity of adsorbed NO2 molecules within MFM-305-CH3 and MFM-305 have been probed using in situ synchrotron X-ray diffraction, inelastic neutron scattering and by electron paramagnetic resonance, high-field solid-state nuclear magnetic resonance and UV/Vis spectroscopies. The design of charged porous sorbents provides a new platform to control the reactivity of corrosive air pollutants.

11.
RSC Adv ; 13(14): 9715-9719, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36968063

RESUMEN

A novel strategy of improving cytotoxicity against metastatic melanoma cells using an oxindolimine copper(ii) complex immobilized and dimerized on a modified Polyhedral Oligomeric Silsesquioxane (POSS) matrix was developed, as revealed by electron paramagnetic resonance (EPR) spectroscopy. An assured correlation between continuous-wave (CW) and pulsed EPR spectroscopies provided a complete characterization of the actual active species, its coordination environment, as well as the efficiency/selectivity of the bioconjugate materials.

12.
J Am Chem Soc ; 144(48): 22193-22201, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36417568

RESUMEN

A small but growing number of molecular compounds have been isolated featuring divalent lanthanides with 4fn5dz21 electron configurations. While the majority of these possess trigonal coordination geometries, we previously reported the first examples of linear divalent metallocenes Ln(CpiPr5)2 (Ln = Tb, Dy; CpiPr5 = pentaisopropylcyclopentadienyl). Here, we report the synthesis and characterization of the remainder of the Ln(CpiPr5)2 (1-Ln) series (including Y and excluding Pm). The compounds can be synthesized through salt metathesis of LnI3 and NaCpiPr5 followed by potassium graphite reduction for Ln = Y, La, Ce, Pr, Nd, Gd, Ho, and Er, by in situ reduction during salt metathesis of LnI3 and NaCpiPr5 for Ln = Tm and Lu, or through salt metathesis from LnI2 and NaCpiPr5 for Ln = Sm, Eu, and Yb. Single crystal X-ray diffraction analyses of 1-Ln confirm a linear coordination geometry with pseudo-D5d symmetry for the entire series. Structural and ultraviolet-visible spectroscopy data support a 4fn+1 electron configuration for Ln2+ = Sm, Eu, Tm, and Yb and a 4fn5dz21 configuration for the other lanthanides ([Kr]4dz21 for Y2+). Characterization of 1-Ln (Ln = Y, La) using electron paramagnetic resonance spectroscopy reveals significant s-d orbital mixing in the highest occupied molecular orbital and hyperfine coupling constants that are the largest reported to date for divalent compounds of yttrium and lanthanum. Evaluation of the room temperature magnetic susceptibilities of 1-Ln and comparison with values previously reported for trigonal Ln2+ compounds suggests that the more pronounced 6s-5d mixing may be associated with weaker 4f-5d spin coupling.

13.
Angew Chem Int Ed Engl ; 61(51): e202212164, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36240785

RESUMEN

The production of conjugated C4-C5 dienes from biomass can enable the sustainable synthesis of many important polymers and liquid fuels. Here, we report the first example of bimetallic (Nb, Al)-atomically doped mesoporous silica, denoted as AlNb-MCM-41, which affords quantitative conversion of 2-methyltetrahydrofuran (2-MTHF) to pentadienes with a high selectivity of 91 %. The incorporation of AlIII and NbV sites into the framework of AlNb-MCM-41 has effectively tuned the nature and distribution of Lewis and Brønsted acid sites within the structure. Operando X-ray absorption, diffuse reflectance infrared and solid-state NMR spectroscopy collectively reveal the molecular mechanism of the conversion of adsorbed 2-MTHF over AlNb-MCM-41. Specifically, the atomically-dispersed NbV sites play an important role in binding 2-MTHF to drive the conversion. Overall, this study highlights the potential of hetero-atomic mesoporous solids for the manufacture of renewable materials.


Asunto(s)
Alcadienos , Niobio , Niobio/química , Aluminio , Catálisis
14.
J Am Chem Soc ; 144(41): 18967-18975, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36198137

RESUMEN

Increasing levels of air pollution are driving the need for the development of new processes that take "waste-to-chemicals". Herein, we report the capture and conversion under ambient conditions of a major air pollutant, NO2, using a robust metal-organic framework (MOF) material, Zr-bptc (H4bptc = 3,3',5,5'-biphenyltetracarboxylic acid), comprising {Zr6(µ3-O)4(µ3-OH)4(COO)12} clusters linked by 4-connected bptc4- ligands in an ftw topology. At 298 K, Zr-bptc shows exceptional stability and adsorption of NO2 at both low (4.9 mmol g-1 at 10 mbar) and high pressures (13.8 mmol g-1 at 1.0 bar), as measured by isotherm experiments. Dynamic breakthrough experiments have confirmed the selective retention of NO2 by Zr-bptc at low concentrations under both dry and wet conditions. The immobilized NO2 can be readily transformed into valuable nitro compounds relevant to construction, agrochemical, and pharmaceutical industries. In situ crystallographic and spectroscopic studies reveal strong binding interactions of NO2 to the {Zr6(µ3-O)4(µ3-OH)4(COO)12} cluster node. This study paves a circular pathway to enable the integration of nitrogen-based air pollutants into the production of fine chemicals.


Asunto(s)
Contaminantes Atmosféricos , Estructuras Metalorgánicas , Dióxido de Nitrógeno , Estructuras Metalorgánicas/química , Nitrocompuestos , Ligandos , Contaminantes Atmosféricos/análisis , Agroquímicos , Nitrógeno
15.
J Mater Chem A Mater ; 10(34): 17801-17807, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36132069

RESUMEN

Understanding the structural and chemical changes that reactive metal-organic frameworks (MOFs) undergo is crucial for the development of new efficient catalysts for electrochemical reduction of CO2. Here, we describe three Bi(iii) materials, MFM-220, MFM-221 and MFM-222, which are constructed from the same ligand (biphenyl-3,3',5,5'-tetracarboxylic acid) but which show distinct porosity with solvent-accessible voids of 49.6%, 33.6% and 0%, respectively. We report the first study of the impact of porosity of MOFs on their evolution as electrocatalysts. A Faradaic efficiency of 90.4% at -1.1 V vs. RHE (reversible hydrogen electrode) is observed for formate production over an electrode decorated with MFM-220-p, formed from MFM-220 on application of an external potential in the presence of 0.1 M KHCO3 electrolyte. In situ electron paramagnetic resonance spectroscopy confirms the presence of ·COOH radicals as a reaction intermediate, with an observed stable and consistent Faradaic efficiency and current density for production of formate by electrolysis over 5 h. This study emphasises the significant role of porosity of MOFs as they react and evolve during electroreduction of CO2 to generate value-added chemicals.

17.
Chem Sci ; 13(19): 5574-5581, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35694338

RESUMEN

Heterometallic lanthanide [LnLn'] coordination complexes that are accessible thermodynamically are very scarce because the metals of this series have very similar chemical behaviour. Trinuclear systems of this category have not been reported. A coordination chemistry scaffold has been shown to produce molecules of type [LnLn'Ln] of high purity, i.e. exhibiting high metal distribution ability, based on their differences in ionic radius. Through a detailed analysis of density functional theory (DFT) based calculations, we discern the energy contributions that lead to the unparalleled chemical selectivity of this molecular system. Some of the previously reported examples are compared here with the newly prepared member of this exotic list, [Er2Pr(LA)2(LB)2(py)(H2O)2](NO3) (1) (H2LA and H2LB are two ß-diketone ligands). A magnetic analysis extracted from magnetization and calorimetry determinations identifies the necessary attributes for it to act as an addressable, conditional multiqubit spin-based quantum gate. Complementary ab initio calculations confirm the feasibility of these complexes as composite quantum gates, since they present well-isolated ground states with highly anisotropic and distinct g-tensors. The electronic structure of 1 has also been analyzed by EPR. Pulsed experiments have allowed the establishment of the quantum coherence of the transitions within the relevant spin states, as well as the feasibility of a coherent control of these states via nutation experiments.

18.
Nat Mater ; 21(8): 932-938, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35773491

RESUMEN

Natural gas, consisting mainly of methane (CH4), has a relatively low energy density at ambient conditions (~36 kJ l-1). Partial oxidation of CH4 to methanol (CH3OH) lifts the energy density to ~17 MJ l-1 and drives the production of numerous chemicals. In nature, this is achieved by methane monooxygenase with di-iron sites, which is extremely challenging to mimic in artificial systems due to the high dissociation energy of the C-H bond in CH4 (439 kJ mol-1) and facile over-oxidation of CH3OH to CO and CO2. Here we report the direct photo-oxidation of CH4 over mono-iron hydroxyl sites immobilized within a metal-organic framework, PMOF-RuFe(OH). Under ambient and flow conditions in the presence of H2O and O2, CH4 is converted to CH3OH with 100% selectivity and a time yield of 8.81 ± 0.34 mmol gcat-1 h-1 (versus 5.05 mmol gcat-1 h-1 for methane monooxygenase). By using operando spectroscopic and modelling techniques, we find that confined mono-iron hydroxyl sites bind CH4 by forming an [Fe-OH···CH4] intermediate, thus lowering the barrier for C-H bond activation. The confinement of mono-iron hydroxyl sites in a porous matrix demonstrates a strategy for C-H bond activation in CH4 to drive the direct photosynthesis of CH3OH.


Asunto(s)
Metano , Metanol , Metano/química , Oxidación-Reducción
19.
J Am Chem Soc ; 144(19): 8624-8632, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35533381

RESUMEN

The presence of active sites in metal-organic framework (MOF) materials can control and affect their performance significantly in adsorption and catalysis. However, revealing the interactions between the substrate and active sites in MOFs at atomic precision remains a challenging task. Here, we report the direct observation of binding of NH3 in a series of UiO-66 materials containing atomically dispersed defects and open Cu(I) and Cu(II) sites. While all MOFs in this series exhibit similar surface areas (1111-1135 m2 g-1), decoration of the -OH site in UiO-66-defect with Cu(II) results in a 43% enhancement of the isothermal uptake of NH3 at 273 K and 1.0 bar from 11.8 in UiO-66-defect to 16.9 mmol g-1 in UiO-66-CuII. A 100% enhancement of dynamic adsorption of NH3 at a concentration level of 630 ppm from 2.07 mmol g-1 in UiO-66-defect to 4.15 mmol g-1 in UiO-66-CuII at 298 K is observed. In situ neutron powder diffraction, inelastic neutron scattering, and electron paramagnetic resonance, solid-state nuclear magnetic resonance, and infrared spectroscopies, coupled with modeling reveal that the enhanced NH3 uptake in UiO-66-CuII originates from a {Cu(II)···NH3} interaction, with a reversible change in geometry at Cu(II) from near-linear to trigonal coordination. This work represents the first example of structural elucidation of NH3 binding in MOFs containing open metal sites and will inform the design of new efficient MOF sorbents by targeted control of active sites for NH3 capture and storage.

20.
Angew Chem Weinheim Bergstr Ger ; 134(51): e202212164, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38505214

RESUMEN

The production of conjugated C4-C5 dienes from biomass can enable the sustainable synthesis of many important polymers and liquid fuels. Here, we report the first example of bimetallic (Nb, Al)-atomically doped mesoporous silica, denoted as AlNb-MCM-41, which affords quantitative conversion of 2-methyltetrahydrofuran (2-MTHF) to pentadienes with a high selectivity of 91 %. The incorporation of AlIII and NbV sites into the framework of AlNb-MCM-41 has effectively tuned the nature and distribution of Lewis and Brønsted acid sites within the structure. Operando X-ray absorption, diffuse reflectance infrared and solid-state NMR spectroscopy collectively reveal the molecular mechanism of the conversion of adsorbed 2-MTHF over AlNb-MCM-41. Specifically, the atomically-dispersed NbV sites play an important role in binding 2-MTHF to drive the conversion. Overall, this study highlights the potential of hetero-atomic mesoporous solids for the manufacture of renewable materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...