Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmacol Res Perspect ; 3(3): e00134, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26236482

RESUMEN

Although the anti-inflammatory role of the A2a receptor is well established, controversy remains with regard to the therapeutic value for A2a agonists in treatment of inflammatory lung diseases, also as a result of unwanted A2a-mediated cardiovascular effects. In this paper, we describe the discovery and characterization of a new, potent and selective A2a agonist (compound 2) with prolonged lung retention and limited systemic exposure following local administration. To support the lead optimization chemistry program with compound selection and profiling, multiple in vitro and in vivo assays were used, characterizing compound properties, pharmacodynamics (PD), and drug concentrations. Particularly, pharmacokinetic-PD modeling was applied to quantify the effects on the cardiovascular system, and an investigative toxicology study in rats was performed to explore potential myocardial toxicities. Compound 2, in comparison to a reference A2a agonist, UK-432,097, demonstrated higher solubility, lower lipophilicity, lower plasma protein binding, high rat lung retention (28% remaining after 24 h), and was efficacious in a lung inflammatory rat model following intratracheal dosing. Despite these properties, compound 2 did not provide a sufficient therapeutic index, that is, separation of local anti-inflammatory efficacy in the lung from systemic side effects in the cardiovascular system. The plasma concentration that resulted in induction of hypotension (half maximal effective concentration; EC50 0.5 nmol/L) correlated to the in vitro A2a potency (rIC50 0.6 nmol/L). Histopathological lesions in the heart were observed at a dose level which is threefold above the efficacious dose level in the inflammatory rat lung model. In conclusion, compound 2 is a highly potent and selective A2a agonist with significant lung retention after intratracheal administration. Despite its local anti-inflammatory efficacy in rat lung, small margins to the cardiovascular effects suggested limited therapeutic value of this compound for treatment of inflammatory lung disease by the inhaled route.

2.
Bioorg Med Chem Lett ; 22(21): 6671-6, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23010262

RESUMEN

Structure-based evolution of the original fragment leads resulted in the identification of 4-[2-hydroxyethyl(1-naphthylmethyl)amino]-6-[(2S)-2-methylmorpholin-4-yl]-1H-pyrimidin-2-one, (S)-21, a potent, selective phosphoinositide 3-kinases (PI3K) p110ß isoform inhibitor with favourable in vivo antiplatelet effect. Despite its antiplatelet action, (S)-21 did not significantly increase bleeding time in dogs. Additionally, due to its enhanced selectivity over p110α, (S)-21 did not induce any insulin resistance in rats.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/antagonistas & inhibidores , Plaquetas/efectos de los fármacos , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Descubrimiento de Drogas , Fibrinolíticos/síntesis química , Fibrinolíticos/farmacología , Morfolinas/síntesis química , Morfolinas/farmacología , Isoformas de Proteínas/antagonistas & inhibidores , Pirimidinonas/síntesis química , Pirimidinonas/farmacología , Animales , Tiempo de Sangría , Perros , Fibrinolíticos/química , Concentración 50 Inhibidora , Resistencia a la Insulina , Estructura Molecular , Morfolinas/química , Pirimidinonas/química , Ratas
3.
Drug Metab Rev ; 44(3): 224-52, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22697420

RESUMEN

The high rate of attrition during drug development and its associated high research and development (R&D) cost have put pressure on pharmaceutical companies to ensure that candidate drugs going to clinical testing have the appropriate quality such that the biological hypothesis could be evaluated. To help achieve this ambition, drug metabolism and pharmacokinetic (DMPK) science and increasing investment have been deployed earlier in the R&D process. To gain maximum return on investment, it is essential that DMPK concepts are both appropriately integrated into the compound design process and that compound selection is focused on accurate prediction of likely outcomes in patients. This article describes key principles that underpin the contribution of DMPK science for small-molecule research based on 15 years of discovery support in a major pharmaceutical company. It does not aim to describe the breadth and depth of DMPK science, but more the practical application for decision making in real-world situations.


Asunto(s)
Industria Farmacéutica/métodos , Drogas en Investigación/farmacocinética , Animales , Toma de Decisiones en la Organización , Evaluación Preclínica de Medicamentos/métodos , Interacciones Farmacológicas , Drogas en Investigación/efectos adversos , Drogas en Investigación/metabolismo , Drogas en Investigación/farmacología , Humanos , Inactivación Metabólica , Tasa de Depuración Metabólica
4.
J Med Chem ; 50(19): 4606-15, 2007 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-17725338

RESUMEN

A high-throughput method for rapid screening of in vitro drug-brain homogenate binding is presented. The method is based on a straightforward sample pooling approach combining equilibrium dialysis with liquid chromatography mass spectrometry (LCMS). A strong correlation of fraction unbound in brain (fu) between single compound measurements and 25-pooled compounds (R2 = 0.906) was obtained for a selection of structurally diverse CNS compounds with a wide range of fractions unbound. Effects of brain homogenate dilution and dialysis time were investigated. To the best of our knowledge, it was the first time that we have demonstrated consistent fraction unbound in mouse and rat brain homogenate, revealing the drug-tissue partitioning mechanism predominated by hydrophobic interaction. On the basis of this finding, a generic approach to estimate drug binding to various tissues is proposed. A robust and interpretable QSAR for fu prediction is also presented by statistical modeling.


Asunto(s)
Encéfalo/metabolismo , Fármacos del Sistema Nervioso Central/metabolismo , Relación Estructura-Actividad Cuantitativa , Animales , Fármacos del Sistema Nervioso Central/química , Fármacos del Sistema Nervioso Central/farmacocinética , Diálisis , Interacciones Hidrofóbicas e Hidrofílicas , Técnicas In Vitro , Ratones , Modelos Estadísticos , Unión Proteica , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA