Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Cell Biol ; 20(10): 1203-1214, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30202050

RESUMEN

Glioblastoma multiforme (GBMs) are recurrent lethal brain tumours. Recurrent GBMs often exhibit mesenchymal, stem-like phenotypes that could explain their resistance to therapy. Analyses revealed that recurrent GBMs have increased tension and express high levels of glycoproteins that increase the bulkiness of the glycocalyx. Studies showed that a bulky glycocalyx potentiates integrin mechanosignalling and tissue tension and promotes a mesenchymal, stem-like phenotype in GBMs. Gain- and loss-of-function studies implicated integrin mechanosignalling as an inducer of GBM growth, survival, invasion and treatment resistance, and a mesenchymal, stem-like phenotype. Mesenchymal-like GBMs were highly contractile and expressed elevated levels of glycoproteins that expanded their glycocalyx, and they were surrounded by a stiff extracellular matrix that potentiated integrin mechanosignalling. Our findings suggest that there is a dynamic and reciprocal link between integrin mechanosignalling and a bulky glycocalyx, implying a causal link towards a mesenchymal, stem-like phenotype in GBMs. Strategies to ameliorate GBM tissue tension offer a therapeutic approach to reduce mortality due to GBM.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Glicocálix/metabolismo , Integrinas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Neoplásicas/metabolismo , Animales , Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Supervivencia Celular/efectos de los fármacos , Retroalimentación Fisiológica/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones Desnudos , Células Madre Neoplásicas/efectos de los fármacos , Tensión Superficial , Temozolomida/uso terapéutico , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Cancer Res ; 77(21): 5846-5859, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28720577

RESUMEN

The lysyl oxidase-like protein LOXL2 has been suggested to contribute to tumor progression and metastasis, but in vivo evidence has been lacking. Here we provide functional evidence that LOXL2 is a key driver of breast cancer metastasis in two conditional transgenic mouse models of PyMT-induced breast cancer. LOXL2 ablation in mammary tumor cells dramatically decreased lung metastasis, whereas LOXL2 overexpression promoted metastatic tumor growth. LOXL2 depletion or overexpression in tumor cells does not affect extracellular matrix stiffness or organization in primary and metastatic tumors, implying a function for LOXL2 independent of its conventional role in extracellular matrix remodeling. In support of this likelihood, cellular and molecular analyses revealed an association of LOXL2 action with elevated levels of the EMT regulatory transcription factor Snail1 and expression of several cytokines that promote premetastatic niche formation. Taken together, our findings established a pathophysiologic role and new function for LOXL2 in breast cancer metastasis. Cancer Res; 77(21); 5846-59. ©2017 AACR.


Asunto(s)
Aminoácido Oxidorreductasas/genética , Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Aminoácido Oxidorreductasas/deficiencia , Animales , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Transición Epitelial-Mesenquimal/genética , Matriz Extracelular/metabolismo , Femenino , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/secundario , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Desnudos , Ratones Transgénicos , Microscopía Fluorescente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo , Células Tumorales Cultivadas
4.
Integr Biol (Camb) ; 8(7): 795-804, 2016 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-27334548

RESUMEN

The mechanical properties of the extracellular matrix influence cell signaling to regulate key cellular processes, including differentiation, apoptosis, and transformation. Understanding the molecular mechanisms underlying mechanotransduction is contingent upon our ability to visualize the effect of altered matrix properties on the nanoscale organization of proteins involved in this signalling. The development of super-resolution imaging techniques has afforded researchers unprecedented ability to probe the organization and localization of proteins within the cell. However, most of these methods require use of substrates like glass or silicon wafers, which are artificially rigid. In light of a growing body of literature demonstrating the importance of mechanical properties of the extracellular matrix in regulating many aspects of cellular behavior and signaling, we have developed a system that allows scanning angle interference microscopy on a mechanically tunable substrate. We describe its implementation in detail and provide examples of how it may be used to aide investigations into the effect of substrate rigidity on intracellular signaling.


Asunto(s)
Adhesión Celular/efectos de la radiación , Matriz Extracelular/fisiología , Matriz Extracelular/ultraestructura , Micromanipulación/métodos , Nanopartículas/ultraestructura , Geles de Silicona/química , Línea Celular , Células Epiteliales/citología , Células Epiteliales/fisiología , Humanos , Aumento de la Imagen , Mecanotransducción Celular/fisiología , Microscopía de Fuerza Atómica , Microscopía de Interferencia , Resistencia al Corte , Estrés Mecánico , Resistencia a la Tracción/fisiología
5.
Hepatology ; 64(1): 261-75, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26755329

RESUMEN

UNLABELLED: Matrix rigidity has important effects on cell behavior and is increased during liver fibrosis; however, its effect on primary hepatocyte function is unknown. We hypothesized that increased matrix rigidity in fibrotic livers would activate mechanotransduction in hepatocytes and lead to inhibition of liver-specific functions. To determine the physiologically relevant ranges of matrix stiffness at the cellular level, we performed detailed atomic force microscopy analysis across liver lobules from normal and fibrotic livers. We determined that normal liver matrix stiffness was around 150 Pa and increased to 1-6 kPa in areas near fibrillar collagen deposition in fibrotic livers. In vitro culture of primary hepatocytes on collagen matrix of tunable rigidity demonstrated that fibrotic levels of matrix stiffness had profound effects on cytoskeletal tension and significantly inhibited hepatocyte-specific functions. Normal liver stiffness maintained functional gene regulation by hepatocyte nuclear factor 4 alpha (HNF4α), whereas fibrotic matrix stiffness inhibited the HNF4α transcriptional network. Fibrotic levels of matrix stiffness activated mechanotransduction in primary hepatocytes through focal adhesion kinase. In addition, blockade of the Rho/Rho-associated protein kinase pathway rescued HNF4α expression from hepatocytes cultured on stiff matrix. CONCLUSION: Fibrotic levels of matrix stiffness significantly inhibit hepatocyte-specific functions in part by inhibiting the HNF4α transcriptional network mediated through the Rho/Rho-associated protein kinase pathway. Increased appreciation of the role of matrix rigidity in modulating hepatocyte function will advance our understanding of the mechanisms of hepatocyte dysfunction in liver cirrhosis and spur development of novel treatments for chronic liver disease. (Hepatology 2016;64:261-275).


Asunto(s)
Matriz Extracelular/fisiología , Factor Nuclear 4 del Hepatocito/metabolismo , Hepatocitos/fisiología , Animales , Células Cultivadas , Citoesqueleto/fisiología , Expresión Génica , Cirrosis Hepática/metabolismo , Mecanotransducción Celular , Ratones Endogámicos C57BL , Microscopía de Fuerza Atómica , Quinasas Asociadas a rho/metabolismo
6.
Free Radic Biol Med ; 79: 269-80, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25532934

RESUMEN

Desmosplasia is a characteristic of most solid tumors and leads to fibrosis through abnormal extracellular matrix (ECM) deposition, remodeling, and posttranslational modifications. The resulting stiff tumor stroma not only compromises vascular integrity to induce hypoxia and impede drug delivery, but also promotes aggressiveness by potentiating the activity of key growth, invasion, and survival pathways. Intriguingly, many of the protumorigenic signaling pathways that are mechanically activated by ECM stiffness also promote glucose uptake and aerobic glycolysis, and an altered metabolism is a recognized hallmark of cancer. Indeed, emerging evidence suggests that metabolic alterations and an abnormal ECM may cooperatively drive cancer cell aggression and treatment resistance. Accordingly, improved methods to monitor tissue mechanics and metabolism promise to improve diagnostics and treatments to ameliorate ECM stiffening and elevated mechanosignaling may improve patient outcome. Here we discuss the interplay between ECM mechanics and metabolism in tumor biology and suggest that monitoring these processes and targeting their regulatory pathways may improve diagnostics, therapy, and the prevention of malignant transformation.


Asunto(s)
Neoplasias/metabolismo , Progresión de la Enfermedad , Matriz Extracelular/metabolismo , Humanos , Neoplasias/patología , Microambiente Tumoral
7.
Stem Cell Reports ; 2(3): 271-81, 2014 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-24672751

RESUMEN

For cell-based treatments of myocardial infarction, a better understanding of key developmental signaling pathways and more robust techniques for producing cardiomyocytes are required. Manipulation of Notch signaling has promise as it plays an important role during cardiovascular development, but previous studies presented conflicting results that Notch activation both positively and negatively regulates cardiogenesis. We developed surface- and microparticle-based Notch-signaling biomaterials that function in a time-specific activation-tunable manner, enabling precise investigation of Notch activation at specific developmental stages. Using our technologies, a biphasic effect of Notch activation on cardiac differentiation was found: early activation in undifferentiated human embryonic stem cells (hESCs) promotes ectodermal differentiation, activation in specified cardiovascular progenitor cells increases cardiac differentiation. Signaling also induces cardiomyocyte proliferation, and repeated doses of Notch-signaling microparticles further enhance cardiomyocyte population size. These results highlight the diverse effects of Notch activation during cardiac development and provide approaches for generating large quantities of cardiomyocytes.


Asunto(s)
Materiales Biocompatibles , Diferenciación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Receptores Notch/metabolismo , Proteínas de Unión al Calcio/metabolismo , Membrana Celular/metabolismo , Proliferación Celular , Micropartículas Derivadas de Células/metabolismo , Ectodermo/metabolismo , Fibrina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Serrate-Jagged , Transducción de Señal
8.
J Biomed Mater Res A ; 91(2): 436-46, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18985776

RESUMEN

The Notch signaling pathway is a promising target for controlling cell fate choices at the biomaterial-tissue interface. Building on our previous work in developing Notch-signaling biomaterials, we evaluated various immobilization schemes for Notch ligands, and their effect on human foreskin keratinocytes. A peptide sequence derived from the Jagged-1 DSL-region and immobilized to poly(2-hydroxyethyl methacrylate) (polyHEMA) showed no bioactivity in relation to the Notch-CSL pathway. The full-length Jagged-1 protein immobilized directly to the polyHEMA surface showed activity in signaling the Notch-CSL pathway. However, an indirect affinity immobilization approach yielded a stronger signal. Human keratinocytes plated on bound Jagged-1 showed upregulated involucrin, keratin 10, and loricrin protein expression, with this expression being cell density-dependent. Utilizing a human foreskin rafted organ culture model as a bridge between in vitro and in vivo studies, Jagged-1-modified or control polyHEMA rods were implanted in human foreskin and cultured at the air-medium interface. Keratinocyte proliferation was suppressed and intermediate-stage differentiation promoted in Jagged-1-modified rods compared with control rods. Thus, Notch-signaling biomaterials provide a robust approach to control keratinocyte differentiation and may find application to other progenitor and stem cells.


Asunto(s)
Materiales Biocompatibles/metabolismo , Proteínas de Unión al Calcio/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Queratinocitos/citología , Proteínas de la Membrana/metabolismo , Técnicas de Cultivo de Órganos/métodos , Receptores Notch/metabolismo , Secuencia de Aminoácidos , Materiales Biocompatibles/química , Proteínas de Unión al Calcio/química , Diferenciación Celular , Células Cultivadas , Humanos , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/metabolismo , Implantes Experimentales , Péptidos y Proteínas de Señalización Intercelular/química , Proteína Jagged-1 , Queratinocitos/metabolismo , Proteínas de la Membrana/química , Metacrilatos/química , Datos de Secuencia Molecular , Proteínas Serrate-Jagged , Transducción de Señal , Piel/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA