Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Struct Biol ; 215(4): 108033, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37797915

RESUMEN

Tandem repeats in proteins identification, classification and curation is a complex process that requires manual processing from experts, processing power and time. There are recent and relevant advances applying machine learning for protein structure prediction and repeat classification that are useful for this process. However, no service contemplates required databases and software to supplement researching on repeat proteins. In this publication we present Daisy, an integrated repeat protein curation web service. This service can process Protein Data Bank (PDB) and the AlphaFold Database entries for tandem repeats identification. In addition, it uses an algorithm to search a sequence against a library of Pfam hidden Markov model (HMM). Repeat classifications are associated with the identified families through RepeatsDB. This prediction is considered for enhancing the ReUPred algorithm execution and hastening the repeat units identification process. The service can also operate every associated PDB and AlphaFold structure with a UniProt proteome registry. Availability: The Daisy web service is freely accessible at daisy.bioinformatica.org.


Asunto(s)
Algoritmos , Programas Informáticos , Humanos , Proteoma , Bases de Datos de Proteínas
2.
Bioinformatics ; 38(21): 4959-4961, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36111870

RESUMEN

SUMMARY: A collection of conformers that exist in a dynamical equilibrium defines the native state of a protein. The structural differences between them describe their conformational diversity, a defining characteristic of the protein with an essential role in multiple cellular processes. Since most proteins carry out their functions by assembling into complexes, we have developed CoDNaS-Q, the first online resource to explore conformational diversity in homooligomeric proteins. It features a curated collection of redundant protein structures with known quaternary structure. CoDNaS-Q integrates relevant annotations that allow researchers to identify and explore the extent and possible reasons of conformational diversity in homooligomeric protein complexes. AVAILABILITY AND IMPLEMENTATION: CoDNaS-Q is freely accessible at http://ufq.unq.edu.ar/codnasq/ or https://codnas-q.bioinformatica.org/home. The data can be retrieved from the website. The source code of the database can be downloaded from https://github.com/SfrRonaldo/codnas-q.


Asunto(s)
Proteínas , Programas Informáticos , Proteínas/química , Conformación Proteica , Bases de Datos Factuales
3.
Bioinformatics ; 38(6): 1745-1748, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34954795

RESUMEN

SUMMARY: Conformational changes in RNA native ensembles are central to fulfill many of their biological roles. Systematic knowledge of the extent and possible modulators of this conformational diversity is desirable to better understand the relationship between RNA dynamics and function. We have developed CoDNaS-RNA as the first database of conformational diversity in RNA molecules. Known RNA structures are retrieved and clustered to identify alternative conformers of each molecule. Pairwise structural comparisons between all conformers within each cluster allows to measure the variability of the molecule. Additional annotations about structural features, molecular interactions and biological function are provided. All data in CoDNaS-RNA is free to download and available as a public website that can be of interest for researchers in computational biology and other life science disciplines. AVAILABILITY AND IMPLEMENTATION: The data underlying this article are available at http://ufq.unq.edu.ar/codnasrna or https://codnas-rna.bioinformatica.org/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional , ARN , Conformación Molecular , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...