Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rapid Commun Mass Spectrom ; 38(13): e9759, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38680121

RESUMEN

RATIONALE: The study addresses the challenge of identifying RNA post-transcriptional modifications when commercial standards are not available to generate reference spectral libraries. It proposes employing homologous nucleobases and deoxyribonucleosides as alternative reference spectral libraries to aid in identifying modified ribonucleosides and distinguishing them from their positional isomers when the standards are unavailable. METHODS: Complete sets of ribonucleoside, deoxyribonucleoside and nucleobase standards were analyzed using high-performance nano-flow liquid chromatography coupled to an Orbitrap Eclipse Tribrid mass spectrometer. Spectral libraries were constructed from homologous nucleobases and deoxyribonucleosides using targeted MS2 and neutral-loss-triggered MS3 methods, and collision energies were optimized. The feasibility of using these libraries for identifying modified ribonucleosides and their positional isomers was assessed through comparison of spectral fragmentation patterns. RESULTS: Our analysis reveals that both MS2 and neutral-loss-triggered MS3 methods yielded rich spectra with similar fragmentation patterns across ribonucleosides, deoxyribonucleosides and nucleobases. Moreover, we demonstrate that spectra from nucleobases and deoxyribonucleosides, generated at optimized collision energies, exhibited sufficient similarity to those of modified ribonucleosides to enable their use as reference spectra for accurate identification of positional isomers within ribonucleoside families. CONCLUSIONS: The study demonstrates the efficacy of utilizing homologous nucleobases and deoxyribonucleosides as interchangeable reference spectral libraries for identifying modified ribonucleosides and their positional isomers. This approach offers a valuable solution for overcoming limitations posed by the unavailability of commercial standards, enhancing the analysis of RNA post-transcriptional modifications via mass spectrometry.


Asunto(s)
Desoxirribonucleósidos , Ribonucleósidos , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Ribonucleósidos/química , Ribonucleósidos/análisis , Desoxirribonucleósidos/química , Cromatografía Líquida de Alta Presión/métodos , Nanotecnología/métodos , Cromatografía Liquida/métodos
2.
EMBO J ; 42(19): e112507, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37609797

RESUMEN

Queuosine (Q) is a modified nucleoside at the wobble position of specific tRNAs. In mammals, queuosinylation is facilitated by queuine uptake from the gut microbiota and is introduced into tRNA by the QTRT1-QTRT2 enzyme complex. By establishing a Qtrt1 knockout mouse model, we discovered that the loss of Q-tRNA leads to learning and memory deficits. Ribo-Seq analysis in the hippocampus of Qtrt1-deficient mice revealed not only stalling of ribosomes on Q-decoded codons, but also a global imbalance in translation elongation speed between codons that engage in weak and strong interactions with their cognate anticodons. While Q-dependent molecular and behavioral phenotypes were identified in both sexes, female mice were affected more severely than males. Proteomics analysis confirmed deregulation of synaptogenesis and neuronal morphology. Together, our findings provide a link between tRNA modification and brain functions and reveal an unexpected role of protein synthesis in sex-dependent cognitive performance.


Asunto(s)
Nucleósido Q , ARN de Transferencia , Femenino , Ratones , Animales , Nucleósido Q/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Anticodón , Biosíntesis de Proteínas , Codón , Mamíferos/genética
3.
Nucleic Acids Res ; 50(18): 10785-10800, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36169220

RESUMEN

Substitution of the queuine nucleobase precursor preQ1 by an azide-containing derivative (azido-propyl-preQ1) led to incorporation of this clickable chemical entity into tRNA via transglycosylation in vitro as well as in vivo in Escherichia coli, Schizosaccharomyces pombe and human cells. The resulting semi-synthetic RNA modification, here termed Q-L1, was present in tRNAs on actively translating ribosomes, indicating functional integration into aminoacylation and recruitment to the ribosome. The azide moiety of Q-L1 facilitates analytics via click conjugation of a fluorescent dye, or of biotin for affinity purification. Combining the latter with RNAseq showed that TGT maintained its native tRNA substrate specificity in S. pombe cells. The semi-synthetic tRNA modification Q-L1 was also functional in tRNA maturation, in effectively replacing the natural queuosine in its stimulation of further modification of tRNAAsp with 5-methylcytosine at position 38 by the tRNA methyltransferase Dnmt2 in S. pombe. This is the first demonstrated in vivo integration of a synthetic moiety into an RNA modification circuit, where one RNA modification stimulates another. In summary, the scarcity of queuosinylation sites in cellular RNA, makes our synthetic q/Q system a 'minimally invasive' system for placement of a non-natural, clickable nucleobase within the total cellular RNA.


Asunto(s)
Nucleósido Q , Schizosaccharomyces , 5-Metilcitosina/metabolismo , Azidas , Biotina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Colorantes Fluorescentes/metabolismo , Humanos , Nucleósido Q/química , ARN de Transferencia/metabolismo , ARN de Transferencia de Aspártico/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , ARNt Metiltransferasas/metabolismo
4.
Methods Mol Biol ; 2428: 133-156, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35171478

RESUMEN

Ribosome profiling methods are based on high-throughput sequencing of ribosome-protected mRNA footprints and allow to study in detail translational changes. Bioinformatic and statistical tools are necessary to analyze sequencing data. Here, we describe our developed methods for a fast and reliable quality control of ribosome profiling data, to efficiently visualize ribosome positions and to estimate ribosome speed in an unbiased way. The methodology described here is applicable to several genetic and environmental conditions including stress and are based on the R package RiboVIEW and calculation of quantitative estimates of local and global translation speed, based on a biophysical model of translation dynamics.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
6.
Nucleic Acids Res ; 50(8): 4201-4215, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-34850949

RESUMEN

The accurate definition of an epitranscriptome is endangered by artefacts resulting from RNA degradation after cell death, a ubiquitous yet little investigated process. By tracing RNA marker modifications through tissue preparation protocols, we identified a major blind spot from daily lab routine, that has massive impact on modification analysis in small RNAs. In particular, m6,6A and Am as co-varying rRNA marker modifications, appeared in small RNA fractions following rRNA degradation in vitro and in cellulo. Analysing mouse tissue at different time points post mortem, we tracked the progress of intracellular RNA degradation after cell death, and found it reflected in RNA modification patterns. Differences were dramatic between liver, where RNA degradation commenced immediately after death, and brain, yielding essentially undamaged RNA. RNA integrity correlated with low amounts of co-varying rRNA markers. Thus validated RNA preparations featured differentially modified tRNA populations whose information content allowed a distinction even among the related brain tissues cortex, cerebellum and hippocampus. Inversely, advanced cell death correlated with high rRNA marker content, and correspondingly little with the naïve state of living tissue. Therefore, unless RNA and tissue preparations are executed with utmost care, interpretation of modification patterns in tRNA and small RNA are prone to artefacts.


Asunto(s)
Artefactos , Procesamiento Postranscripcional del ARN , Animales , Ratones , ARN/genética , ARN/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN de Transferencia/metabolismo
7.
Cell Death Dis ; 12(12): 1139, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34880223

RESUMEN

Transcriptional and cellular-stress surveillance deficits are hallmarks of Huntington's disease (HD), a fatal autosomal-dominant neurodegenerative disorder caused by a pathological expansion of CAG repeats in the Huntingtin (HTT) gene. The nucleolus, a dynamic nuclear biomolecular condensate and the site of ribosomal RNA (rRNA) transcription, is implicated in the cellular stress response and in protein quality control. While the exact pathomechanisms of HD are still unclear, the impact of nucleolar dysfunction on HD pathophysiology in vivo remains elusive. Here we identified aberrant maturation of rRNA and decreased translational rate in association with human mutant Huntingtin (mHTT) expression. The protein nucleophosmin 1 (NPM1), important for nucleolar integrity and rRNA maturation, loses its prominent nucleolar localization. Genetic disruption of nucleolar integrity in vulnerable striatal neurons of the R6/2 HD mouse model decreases the distribution of mHTT in a disperse state in the nucleus, exacerbating motor deficits. We confirmed NPM1 delocalization in the gradually progressing zQ175 knock-in HD mouse model: in the striatum at a presymptomatic stage and in the skeletal muscle at an early symptomatic stage. In Huntington's patient skeletal muscle biopsies, we found a selective redistribution of NPM1, similar to that in the zQ175 model. Taken together, our study demonstrates that nucleolar integrity regulates the formation of mHTT inclusions in vivo, and identifies NPM1 as a novel, readily detectable peripheral histopathological marker of HD progression.


Asunto(s)
Enfermedad de Huntington , Animales , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Ratones , Neuronas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
8.
Methods Mol Biol ; 2298: 217-230, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34085248

RESUMEN

Queuosine (Q) is a hypermodified base that occurs at the wobble position of transfer RNAs (tRNAs) with a GUN anticodon. Q-tRNA modification is widespread among eukaryotes, yet bacteria are the original source of Q. Eukaryotes acquire Q from their diet, or from the gut microbiota (in multicellular organisms). Despite decades of study, the detailed roles of Q-tRNA modification remain to be elucidated, especially regarding its specific mechanisms of action. Here, we describe a method for the fast and reliable detection of Q-tRNA modification levels in individual tRNAs using a few micrograms of total RNA as starting material. The methodology is based on the co-polymerization of boronic acid (N-acryloyl-3-aminophenylboronic acid (APB)) in polyacrylamide gels, and on the interplay between this derivative and free cis-diol groups of the tRNA. During electrophoresis, the cis-diol groups slow down the Q-modified tRNA, which then can be separated from unmodified tRNA and quantified using Northern blot analysis.


Asunto(s)
Northern Blotting/métodos , Nucleósido Q/genética , Procesamiento Postranscripcional del ARN/genética , ARN de Transferencia/genética , Animales , Ácidos Borónicos/metabolismo , Humanos
9.
EMBO J ; 40(6): e105496, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33283887

RESUMEN

Methylation of carbon-5 of cytosines (m5 C) is a post-transcriptional nucleotide modification of RNA found in all kingdoms of life. While individual m5 C-methyltransferases have been studied, the impact of the global cytosine-5 methylome on development, homeostasis and stress remains unknown. Here, using Caenorhabditis elegans, we generated the first organism devoid of m5 C in RNA, demonstrating that this modification is non-essential. Using this genetic tool, we determine the localisation and enzymatic specificity of m5 C sites in the RNome in vivo. We find that NSUN-4 acts as a dual rRNA and tRNA methyltransferase in C. elegans mitochondria. In agreement with leucine and proline being the most frequently methylated tRNA isoacceptors, loss of m5 C impacts the decoding of some triplets of these two amino acids, leading to reduced translation efficiency. Upon heat stress, m5 C loss leads to ribosome stalling at UUG triplets, the only codon translated by an m5 C34-modified tRNA. This leads to reduced translation efficiency of UUG-rich transcripts and impaired fertility, suggesting a role of m5 C tRNA wobble methylation in the adaptation to higher temperatures.


Asunto(s)
5-Metilcitosina/metabolismo , Adaptación Fisiológica/genética , Caenorhabditis elegans/genética , Respuesta al Choque Térmico/genética , Procesamiento Postranscripcional del ARN/genética , Animales , Sistemas CRISPR-Cas/genética , Caenorhabditis elegans/fisiología , Citosina/química , Edición Génica , Calor , Leucina/química , Metiltransferasas/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Prolina/química , Biosíntesis de Proteínas/genética , Biosíntesis de Proteínas/fisiología , ARN/química , ARN/genética , Ribosomas/metabolismo
10.
Nutrients ; 12(3)2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32213952

RESUMEN

Queuine is a eukaryotic micronutrient, derived exclusively from eubacteria. It is incorporated into both cytosolic and mitochondrial transfer RNA to generate a queuosine nucleotide at position 34 of the anticodon loop. The transfer RNA of primary tumors has been shown to be hypomodified with respect to queuosine, with decreased levels correlating with disease progression and poor patient survival. Here, we assess the impact of queuine deficiency on mitochondrial bioenergetics and substrate metabolism in HeLa cells. Queuine depletion is shown to promote a Warburg type metabolism, characterized by increased aerobic glycolysis and glutaminolysis, concomitant with increased ammonia and lactate production and elevated levels of lactate dehydrogenase activity but in the absence of significant changes to proliferation. In intact cells, queuine deficiency caused an increased rate of mitochondrial proton leak and a decreased rate of ATP synthesis, correlating with an observed reduction in cellular ATP levels. Data from permeabilized cells demonstrated that the activity of individual complexes of the mitochondrial electron transport chain were not affected by the micronutrient. Notably, in queuine free cells that had been adapted to grow in galactose medium, the re-introduction of glucose permitted the mitochondrial F1FO-ATP synthase to operate in the reverse direction, acting to hyperpolarize the mitochondrial membrane potential; a commonly observed but poorly understood cancer trait. Together, our data suggest that queuosine hypomodification is a deliberate and advantageous adaptation of cancer cells to facilitate the metabolic switch between oxidative phosphorylation and aerobic glycolysis.


Asunto(s)
Metabolismo Energético , Guanina/análogos & derivados , Micronutrientes/deficiencia , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Activación Enzimática , Glutamina/metabolismo , Glucólisis , Guanina/metabolismo , Células HeLa , Humanos , Mitocondrias/ultraestructura , Modelos Biológicos , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
11.
Nucleic Acids Res ; 48(2): e7, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31777932

RESUMEN

Recently, newly developed ribosome profiling methods based on high-throughput sequencing of ribosome-protected mRNA footprints allow to study genome-wide translational changes in detail. However, computational analysis of the sequencing data still represents a bottleneck for many laboratories. Further, specific pipelines for quality control and statistical analysis of ribosome profiling data, providing high levels of both accuracy and confidence, are currently lacking. In this study, we describe automated bioinformatic and statistical diagnoses to perform robust quality control of ribosome profiling data (RiboQC), to efficiently visualize ribosome positions and to estimate ribosome speed (RiboMine) in an unbiased way. We present an R pipeline to setup and undertake the analyses that offers the user an HTML page to scan own data regarding the following aspects: periodicity, ligation and digestion of footprints; reproducibility and batch effects of replicates; drug-related artifacts; unbiased codon enrichment including variability between mRNAs, for A, P and E sites; mining of some causal or confounding factors. We expect our pipeline to allow an optimal use of the wealth of information provided by ribosome profiling experiments.


Asunto(s)
Biología Computacional , Ribosomas/genética , Programas Informáticos , Codón/genética , Secuenciación de Nucleótidos de Alto Rendimiento/estadística & datos numéricos , Biosíntesis de Proteínas/genética , ARN Mensajero/genética
12.
Nat Rev Endocrinol ; 15(8): 489-498, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31235802

RESUMEN

Mammalian sperm RNA is increasingly recognized as an additional source of paternal hereditary information beyond DNA. Environmental inputs, including an unhealthy diet, mental stresses and toxin exposure, can reshape the sperm RNA signature and induce offspring phenotypes that relate to paternal environmental stressors. Our understanding of the categories of sperm RNAs (such as tRNA-derived small RNAs, microRNAs, ribosomal RNA-derived small RNAs and long non-coding RNAs) and associated RNA modifications is expanding and has begun to reveal the functional diversity and information capacity of these molecules. However, the coding mechanism endowed by sperm RNA structures and by RNA interactions with DNA and other epigenetic factors remains unknown. How sperm RNA-encoded information is decoded in early embryos to control offspring phenotypes also remains unclear. Complete deciphering of the 'sperm RNA code' with regard to metabolic control could move the field towards translational applications and precision medicine, and this may lead to prevention of intergenerational transmission of obesity and type 2 diabetes mellitus susceptibility.


Asunto(s)
Código Genético/fisiología , Enfermedades Metabólicas/genética , Redes y Vías Metabólicas/fisiología , ARN/genética , Espermatozoides/fisiología , Animales , Secuencia de Bases/fisiología , Humanos , Masculino , Enfermedades Metabólicas/metabolismo , ARN/metabolismo , Análisis de Secuencia de ARN/métodos
13.
J Mol Biol ; 431(9): 1763-1779, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-30876917

RESUMEN

Dysregulation of protein translation is emerging as a unifying mechanism in the pathogenesis of many neuronal disorders. Ribosomal RNA (rRNA) and transfer RNA (tRNA) are structural molecules that have complementary and coordinated functions in protein synthesis. Defects in both rRNAs and tRNAs have been described in mammalian brain development, neurological syndromes, and neurodegeneration. In this review, we present the molecular mechanisms that link aberrant rRNA and tRNA transcription, processing and modifications to translation deficits, and neuropathogenesis. We also discuss the interdependence of rRNA and tRNA biosynthesis and how their metabolism brings together proteotoxic stress and impaired neuronal homeostasis.


Asunto(s)
Enfermedad de Alzheimer/genética , Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/genética , Enfermedad de Huntington/genética , Enfermedad de Parkinson/genética , ARN Ribosómico/genética , ARN de Transferencia/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Homeostasis/genética , Humanos , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Neuronas/metabolismo , Neuronas/patología , Biogénesis de Organelos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Biosíntesis de Proteínas , ARN Ribosómico/biosíntesis , ARN de Transferencia/biosíntesis , Ribosomas/genética , Ribosomas/metabolismo , Transcripción Genética
14.
Nucleic Acids Res ; 47(7): 3711-3727, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30715423

RESUMEN

In eukaryotes, the wobble position of tRNA with a GUN anticodon is modified to the 7-deaza-guanosine derivative queuosine (Q34), but the original source of Q is bacterial, since Q is synthesized by eubacteria and salvaged by eukaryotes for incorporation into tRNA. Q34 modification stimulates Dnmt2/Pmt1-dependent C38 methylation (m5C38) in the tRNAAsp anticodon loop in Schizosaccharomyces pombe. Here, we show by ribosome profiling in S. pombe that Q modification enhances the translational speed of the C-ending codons for aspartate (GAC) and histidine (CAC) and reduces that of U-ending codons for asparagine (AAU) and tyrosine (UAU), thus equilibrating the genome-wide translation of synonymous Q codons. Furthermore, Q prevents translation errors by suppressing second-position misreading of the glycine codon GGC, but not of wobble misreading. The absence of Q causes reduced translation of mRNAs involved in mitochondrial functions, and accordingly, lack of Q modification causes a mitochondrial defect in S. pombe. We also show that Q-dependent stimulation of Dnmt2 is conserved in mice. Our findings reveal a direct mechanism for the regulation of translational speed and fidelity in eukaryotes by a nutrient originating from bacteria.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Micronutrientes/genética , Biosíntesis de Proteínas/genética , Proteínas de Schizosaccharomyces pombe/genética , Animales , Anticodón/genética , Asparagina/genética , ADN Mitocondrial/genética , Eucariontes/genética , Guanina/análogos & derivados , Guanina/metabolismo , Metilación , Ratones , ARN de Transferencia/genética , Ribosomas/genética , Schizosaccharomyces/genética , Tirosina/genética
15.
RNA Biol ; 16(3): 249-256, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30646830

RESUMEN

Enzymes of the cytosine-5 RNA methyltransferase Trm4/NSun2 family methylate tRNAs at C48 and C49 in multiple tRNAs, as well as C34 and C40 in selected tRNAs. In contrast to most other organisms, fission yeast Schizosaccharomyces pombe carries two Trm4/NSun2 homologs, Trm4a (SPAC17D4.04) and Trm4b (SPAC23C4.17). Here, we have employed tRNA methylome analysis to determine the dependence of cytosine-5 methylation (m5C) tRNA methylation in vivo on the two enzymes. Remarkably, Trm4a is responsible for all C48 methylation, which lies in the tRNA variable loop, as well as for C34 in tRNALeuCAA and tRNAProCGG, which are at the anticodon wobble position. Conversely, Trm4b methylates C49 and C50, which both lie in the TΨC-stem. Thus, S. pombe show an unusual separation of activities of the NSun2/Trm4 enzymes that are united in a single enzyme in other eukaryotes like humans, mice and Saccharomyces cerevisiae. Furthermore, in vitro activity assays showed that Trm4a displays intron-dependent methylation of C34, whereas Trm4b activity is independent of the intron. The absence of Trm4a, but not Trm4b, causes a mild resistance of S. pombe to calcium chloride.


Asunto(s)
Regulación Fúngica de la Expresión Génica , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Schizosaccharomyces/fisiología , ARNt Metiltransferasas/metabolismo , Citosina/metabolismo , Farmacorresistencia Fúngica/efectos de los fármacos , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Metilación , Conformación de Ácido Nucleico , ARN de Transferencia/química , Schizosaccharomyces/efectos de los fármacos , Transcriptoma
16.
Methods ; 156: 121-127, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30366099

RESUMEN

RNA cytosine-5 methylation (m5C) has emerged as a key epitranscriptomic mark, which fulfills multiple roles in structural modulation, stress signaling and the regulation of protein translation. Bisulfite sequencing is currently the most accurate and reliable method to detect m5C marks at nucleotide resolution. Targeted bisulfite sequencing allows m5C detection at single base resolution, by combining the use of tailored primers with bisulfite treatment. A number of computational tools currently exist to analyse m5C marks in DNA bisulfite sequencing. However, these methods are not directly applicable to the analysis of RNA m5C marks, because DNA analysis focuses on CpG methylation, and because artifactual unconversion and misamplification in RNA can obscure actual methylation signals. We describe a pipeline designed specifically for RNA cytosine-5 methylation analysis in targeted bisulfite sequencing experiments. The pipeline is directly applicable to Illumina MiSeq (or equivalent) sequencing datasets using a web interface (https://bisamp.dkfz.de), and is defined by optimized mapping parameters and the application of tailored filters for the removal of artifacts. We provide examples for the application of this pipeline in the unambiguous detection of m5C marks in tRNAs from mouse embryonic stem cells and neuron-differentiated stem cells as well as in 28S rRNA from human fibroblasts. Finally, we also discuss the adaptability of BisAMP to the analysis of DNA methylation. Our pipeline provides an accurate, fast and user-friendly framework for the analysis of cytosine-5 methylation in amplicons from bisulfite-treated RNA.


Asunto(s)
5-Metilcitosina/análisis , Citosina/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Ribosómico 28S/química , ARN de Transferencia/química , Sulfitos/química , Transcriptoma , 5-Metilcitosina/metabolismo , Animales , Diferenciación Celular , ADN/genética , ADN/metabolismo , Metilación de ADN , Conjuntos de Datos como Asunto , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Internet , Metilación , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Neuronas/citología , Neuronas/metabolismo , Conformación de Ácido Nucleico , ARN Ribosómico 28S/genética , ARN Ribosómico 28S/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Programas Informáticos
17.
EMBO J ; 37(18)2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30093495

RESUMEN

Global protein translation as well as translation at the codon level can be regulated by tRNA modifications. In eukaryotes, levels of tRNA queuosinylation reflect the bioavailability of the precursor queuine, which is salvaged from the diet and gut microbiota. We show here that nutritionally determined Q-tRNA levels promote Dnmt2-mediated methylation of tRNA Asp and control translational speed of Q-decoded codons as well as at near-cognate codons. Deregulation of translation upon queuine depletion results in unfolded proteins that trigger endoplasmic reticulum stress and activation of the unfolded protein response, both in cultured human cell lines and in germ-free mice fed with a queuosine-deficient diet. Taken together, our findings comprehensively resolve the role of this anticodon tRNA modification in the context of native protein translation and describe a novel mechanism that links nutritionally determined modification levels to effective polypeptide synthesis and cellular homeostasis.


Asunto(s)
Estrés del Retículo Endoplásmico , Alimentos Formulados , Nucleósido Q/metabolismo , Procesamiento Postranscripcional del ARN , ARN de Transferencia de Aspártico/metabolismo , Respuesta de Proteína Desplegada , Animales , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Células HCT116 , Células HeLa , Humanos , Ratones , Nucleósido Q/genética , ARN de Transferencia de Aspártico/genética
18.
Cell Rep ; 23(6): 1612-1619, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29742419

RESUMEN

Retarded growth and neurodegeneration are hallmarks of the premature aging disease Cockayne syndrome (CS). Cockayne syndrome proteins take part in the key step of ribosomal biogenesis, transcription of RNA polymerase I. Here, we identify a mechanism originating from a disturbed RNA polymerase I transcription that impacts translational fidelity of the ribosomes and consequently produces misfolded proteins. In cells from CS patients, the misfolded proteins are oxidized by the elevated reactive oxygen species (ROS) and provoke an unfolded protein response that represses RNA polymerase I transcription. This pathomechanism can be disrupted by the addition of pharmacological chaperones, suggesting a treatment strategy for CS. Additionally, this loss of proteostasis was not observed in mouse models of CS.


Asunto(s)
Síndrome de Cockayne/patología , Proteostasis , Animales , Línea Celular , Síndrome de Cockayne/genética , Estrés del Retículo Endoplásmico , Humanos , Ratones , Mutación/genética , Estrés Oxidativo , Biosíntesis de Proteínas , Pliegue de Proteína , ARN Polimerasa I/genética , Especies Reactivas de Oxígeno/metabolismo , Transcripción Genética , Xerodermia Pigmentosa/genética , Xerodermia Pigmentosa/patología
19.
Nat Cell Biol ; 20(5): 535-540, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29695786

RESUMEN

The discovery of RNAs (for example, messenger RNAs, non-coding RNAs) in sperm has opened the possibility that sperm may function by delivering additional paternal information aside from solely providing the DNA 1 . Increasing evidence now suggests that sperm small non-coding RNAs (sncRNAs) can mediate intergenerational transmission of paternally acquired phenotypes, including mental stress2,3 and metabolic disorders4-6. How sperm sncRNAs encode paternal information remains unclear, but the mechanism may involve RNA modifications. Here we show that deletion of a mouse tRNA methyltransferase, DNMT2, abolished sperm sncRNA-mediated transmission of high-fat-diet-induced metabolic disorders to offspring. Dnmt2 deletion prevented the elevation of RNA modifications (m5C, m2G) in sperm 30-40 nt RNA fractions that are induced by a high-fat diet. Also, Dnmt2 deletion altered the sperm small RNA expression profile, including levels of tRNA-derived small RNAs and rRNA-derived small RNAs, which might be essential in composing a sperm RNA 'coding signature' that is needed for paternal epigenetic memory. Finally, we show that Dnmt2-mediated m5C contributes to the secondary structure and biological properties of sncRNAs, implicating sperm RNA modifications as an additional layer of paternal hereditary information.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Trastornos del Metabolismo de la Glucosa/enzimología , Trastornos del Metabolismo de la Glucosa/genética , Herencia Paterna , ARN Pequeño no Traducido/genética , Espermatozoides/enzimología , Animales , Biomarcadores/sangre , Glucemia/metabolismo , ADN (Citosina-5-)-Metiltransferasas/deficiencia , ADN (Citosina-5-)-Metiltransferasas/genética , Dieta Alta en Grasa , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Interacción Gen-Ambiente , Predisposición Genética a la Enfermedad , Trastornos del Metabolismo de la Glucosa/sangre , Trastornos del Metabolismo de la Glucosa/diagnóstico , Herencia , Insulina/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células 3T3 NIH , Conformación de Ácido Nucleico , Fenotipo , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/metabolismo , Relación Estructura-Actividad , Transcriptoma
20.
Sci Rep ; 7(1): 8513, 2017 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-28819135

RESUMEN

PGC-1α is a versatile inducer of mitochondrial biogenesis and responsive to the changing energy demands of the cell. As mitochondrial ATP production requires proteins that derive from translation products of cytosolic ribosomes, we asked whether PGC-1α directly takes part in ribosomal biogenesis. Here, we show that a fraction of cellular PGC-1α localizes to the nucleolus, the site of ribosomal transcription by RNA polymerase I. Upon activation PGC-1α associates with the ribosomal DNA and boosts recruitment of RNA polymerase I and UBF to the rDNA promoter. This induces RNA polymerase I transcription under different stress conditions in cell culture and mouse models as well as in healthy humans and is impaired already in early stages of human Huntington's disease. This novel molecular link between ribosomal and mitochondrial biogenesis helps to explain sarcopenia and cachexia in diseases of neurodegenerative origin.


Asunto(s)
Enfermedad de Huntington/patología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , ARN Ribosómico/biosíntesis , Transcripción Genética , Adulto , Anciano , Animales , Biopsia , Células Cultivadas , ADN/metabolismo , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Mitocondrias/metabolismo , Biogénesis de Organelos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , ARN Polimerasa I/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...