Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Exp Hematol ; 131: 104167, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38262486

RESUMEN

Every second, the body produces 2 million red blood cells through a process called erythropoiesis. Erythropoiesis is hierarchical in that it results from a series of cell fate decisions whereby hematopoietic stem cells progress toward the erythroid lineage. Single-cell transcriptomic and proteomic approaches have revolutionized the way we understand erythropoiesis, revealing it to be a gradual process that underlies a progressive restriction of fate potential driven by quantitative changes in lineage-specifying transcription factors. Despite these major advances, we still know very little about what cell fate decision entails at the molecular level. Novel approaches that simultaneously measure additional properties in single cells, including chromatin accessibility, transcription factor binding, and/or cell surface proteins are being developed at a fast pace, providing the means to exciting new advances in the near future. In this review, we briefly summarize the main findings obtained from single-cell studies of erythropoiesis, highlight outstanding questions, and suggest recent technological advances to address them.


Asunto(s)
Eritropoyesis , Proteómica , Eritropoyesis/genética , Multiómica , Diferenciación Celular , Células Madre Hematopoyéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA