Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(1): 643-654, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36579652

RESUMEN

Surface-heated membrane distillation (MD) enhances the energy efficiency of desalination by mitigating temperature polarization (TP). However, systematic investigations of larger scale, multistage, surface-heated MD system with high water recovery and heat recycling are limited. Here, we explore the design and performance of a multistage surface-heated vacuum MD (SHVMD) with heat recovery through a comprehensive finite difference model. In this process, the latent heat of condensation is recovered through an internal heat exchanger (HX) using the retentate from one stage as the condensing fluid for the next stage and an external HX using the feed as the condensing fluid. Model results show that surface heating enhances the performance compared to conventional vacuum MD (VMD). Specifically, in a six-stage SHVMD process, 54.44% water recovery and a gained output ratio (GOR) of 3.28 are achieved with a surface heat density of 2000 W m-2, whereas a similar six-stage VMD process only reaches 18.19% water recovery and a GOR of 2.15. Mass and energy balances suggest that by mitigating TP, surface heating increases the latent heat trapped in vapor. The internal and external HXs capture and reuse the additional heat, which enhances the GOR values. We show for SHVMD that the hybrid internal/external heat recovery design can have GOR value 1.44 times higher than that of systems with only internal or external heat recovery. Furthermore, by only increasing six stages to eight stages, a GOR value as high as 4.35 is achieved. The results further show that surface heating can reduce the energy consumption of MD for brine concentration. The multistage SHVMD technology exhibits a promising potential for the management of brine from industrial plants.


Asunto(s)
Purificación del Agua , Agua , Calor , Vacio , Destilación/métodos , Membranas Artificiales , Purificación del Agua/métodos
2.
Water Res ; 218: 118503, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35500328

RESUMEN

Membrane distillation (MD) is an emerging thermal desalination technology capable of desalinating waters of any salinity. During typical MD processes, the saline feedwater is heated and acts as the thermal energy carrier; however, temperature polarization (as well as thermal energy loss) contributes to low distillate fluxes, low single-pass water recovery and poor thermal efficiency. An alternative approach is to integrate an extra thermal energy carrier as part of the membrane and/or module assembly, which can channel externally provided heat directly to the membrane-feedwater interface and/or along the feed channel length. This direct-heat delivery has been demonstrated to increase single-pass water recovery and enhance the overall thermal efficiency. We developed a bench-scale direct-heated vacuum MD (DHVMD) process to desalinate pre-treated oil and gas "produced water" with an initial total dissolved solids of 115,500 ppm at a feed temperature ranging between 24 and 32 °C. We evaluated both water flux and specific energy consumption (SEC) as a function of water recovery. The system achieved a 50% water recovery without significant scaling, with an average flux >6 kg m-2 hr-1 and a SEC as low as 2,530 kJ kg-1. The major species of mineral scales (i.e., NaCl, CaSO4, and SrSO4) that limited the water recovery to 68% were modeled in terms of thermodynamics and identified by scanning electron microscopy and energy-dispersive X-ray spectroscopy. In addition, we further developed and employed a physics-based process model to estimate temperature, salinity, water transport and energy flows for full-scale vacuum MD and DHVMD modules. Model results show that a direct-heat input rate of 3,600 W can increase single-pass water recovery from 2.1% to 3.1% while lowering the thermal SEC from 7,800 kJ kg-1 to 6,517 kJ kg-1 in an unoptimized module. Finally, the scaling up potential of DHVMD process is briefly discussed.


Asunto(s)
Destilación , Purificación del Agua , Destilación/métodos , Calor , Membranas Artificiales , Vacio , Agua
3.
Environ Sci Technol ; 54(6): 3678-3690, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32091205

RESUMEN

The growth of mineral crystals on surfaces is a challenge across multiple industrial processes. Membrane-based desalination processes, in particular, are plagued by crystal growth (known as scaling), which restricts the flow of water through the membrane, can cause membrane wetting in membrane distillation, and can lead to the physical destruction of the membrane material. Scaling occurs when supersaturated conditions develop along the membrane surface due to the passage of water through the membrane, a process known as concentration polarization. To reduce scaling, concentration polarization is minimized by encouraging turbulent conditions and by reducing the amount of water recovered from the saline feed. In addition, antiscaling chemicals can be used to reduce the availability of cations. Here, we report on an energy-efficient electrophoretic mixing method capable of nearly eliminating CaSO4 and silicate scaling on electrically conducting membrane distillation (ECMD) membranes. The ECMD membrane material is composed of a percolating layer of carbon nanotubes deposited on porous polypropylene support and cross-linked by poly(vinyl alcohol). The application of low alternating potentials (2 Vpp,1Hz) had a dramatic impact on scale formation, with the impact highly dependent on the frequency of the applied signal, and in the case of silicate, on the pH of the solution.


Asunto(s)
Nanotubos de Carbono , Purificación del Agua , Destilación , Membranas Artificiales , Minerales
4.
Nature ; 562(7727): 346-347, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30333589
5.
ACS Appl Mater Interfaces ; 9(44): 38594-38605, 2017 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-29028296

RESUMEN

The desalination of inland brackish groundwater offers the opportunity to provide potable drinking water to residents and industrial cooling water to industries located in arid regions. Geothermal brines are used to generate electricity, but often contain high concentrations of dissolved salt. Here, we demonstrate how the residual heat left in spent geothermal brines can be used to drive a membrane distillation (MD) process and recover desalinated water. Porous polypropylene membranes were coated with a carbon nanotube (CNT)/poly(vinyl alcohol) layer, resulting in composite membranes having a binary structure that combines the hydrophobic properties critical for MD with the hydrophilic and conductive properties of the CNTs. We demonstrate that the addition of the CNT layer increases membrane flux due to enhanced heat transport from the bulk feed to the membrane surface, a result of CNT's high thermal transport properties. Furthermore, we show how hydroxide ion generation, driven by water electrolysis on the electrically conducting membrane surface, can be used to efficiently dissolve silicate scaling that developed during the process of desalinating the geothermal brine, negating the need for chemical cleaning.

6.
Environ Sci Technol ; 47(11): 5896-903, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23663111

RESUMEN

A hybrid life cycle assessment (LCA) is used to evaluate four sustainability metrics over the life cycle of a power tower concentrating solar power (CSP) facility: greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). The reference design is for a dry-cooled, 106 MW(net) power tower facility located near Tucson, AZ that uses a mixture of mined nitrate salts as the heat transfer fluid and storage medium, a two-tank thermal energy storage system designed for six hours of full load-equivalent storage, and receives auxiliary power from the local electric grid. A thermocline-based storage system, synthetically derived salts, and natural gas auxiliary power are evaluated as design alternatives. Over its life cycle, the reference plant is estimated to have GHG emissions of 37 g CO2eq/kWh, consume 1.4 L/kWh of water and 0.49 MJ/kWh of energy, and have an EPBT of 15 months. Using synthetic salts is estimated to increase GHG emissions by 12%, CED by 7%, and water consumption by 4% compared to mined salts. Natural gas auxiliary power results in greater than 10% decreases in GHG emissions, water consumption, and CED. The thermocline design is most advantageous when coupled with the use of synthetic salts.


Asunto(s)
Diseño de Equipo , Energía Solar , Arizona , Ambiente , Efecto Invernadero , Gas Natural
7.
Environ Sci Technol ; 45(6): 2457-64, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21391722

RESUMEN

Climate change and water scarcity are important issues for today's power sector. To inform capacity expansion decisions, hybrid life cycle assessment is used to evaluate a reference design of a parabolic trough concentrating solar power (CSP) facility located in Daggett, CA, along four sustainability metrics: life cycle (LC) greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). This wet-cooled, 103 MW plant utilizes mined nitrates salts in its two-tank, thermal energy storage (TES) system. Design alternatives of dry-cooling, a thermocline TES, and synthetically derived nitrate salt are evaluated. During its LC, the reference CSP plant is estimated to emit 26 g of CO(2eq) per kWh, consume 4.7 L/kWh of water, and demand 0.40 MJ(eq)/kWh of energy, resulting in an EPBT of approximately 1 year. The dry-cooled alternative is estimated to reduce LC water consumption by 77% but increase LC GHG emissions and CED by 8%. Synthetic nitrate salts may increase LC GHG emissions by 52% compared to mined. Switching from two-tank to thermocline TES configuration reduces LC GHG emissions, most significantly for plants using synthetically derived nitrate salts. CSP can significantly reduce GHG emissions compared to fossil-fueled generation; however, dry-cooling may be required in many locations to minimize water consumption.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Arquitectura y Construcción de Instituciones de Salud , Centrales Eléctricas/instrumentación , Energía Solar , Contaminación del Aire/estadística & datos numéricos , Huella de Carbono/estadística & datos numéricos , Ambiente
8.
J Proteome Res ; 8(11): 5031-40, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19791771

RESUMEN

We reported here a novel, ready-to-use bioarray platform and methodology for construction of sensitive carbohydrate cluster microarrays. This technology utilizes a three-dimensional (3-D) poly(amidoamine) starburst dendrimer monolayer assembled on glass surface, which is functionalized with terminal aminooxy and hydrazide groups for site-specific coupling of carbohydrates. A wide range of saccharides, including monosaccharides, oligosaccharides and polysaccharides of diverse structures, are applicable for the 3-D bioarray platform without prior chemical derivatization. The process of carbohydrate coupling is effectively accelerated by microwave radiation energy. The carbohydrate concentration required for microarray fabrication is substantially reduced using this technology. Importantly, this bioarray platform presents sugar chains in defined orientation and cluster configurations. It is, thus, uniquely useful for exploration of the structural and conformational diversities of glyco-epitope and their functional properties.


Asunto(s)
Carbohidratos/química , Dendrímeros/química , Glicómica/métodos , Análisis por Micromatrices/métodos , Tampones (Química) , Glicómica/instrumentación , Análisis por Micromatrices/instrumentación , Microondas , Estructura Molecular , Propiedades de Superficie
9.
Biochem Biophys Res Commun ; 389(1): 22-7, 2009 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-19698698

RESUMEN

Carbohydrate functionalized nanoparticles, i.e., the glyconanoparticles, have wide application ranging from studies of carbohydrate-protein interactions, in vivo cell imaging, biolabeling, etc. Currently reported methods for preparation of glyconanoparticles require multi-step modifications of carbohydrates moieties to conjugate to nanoparticle surface. However, the required synthetic manipulations are difficult and time consuming. We report herewith a simple and versatile method for preparing glyconanoparticles. This method is based on the utilization of clean and convenient microwave irradiation energy for one-step, site-specific conjugation of unmodified carbohydrates onto hydrazide-functionalized Au nanoparticles. A colorimetric assay that utilizes the ensemble of gold glyconanoparticles and Concanavalin A (ConA) was also presented. This feasible assay system was developed to analyze multivalent interactions and to determine the dissociation constant (K(d)) for five kind of Au glyconanoparticles with lectin. Surface plasmon changes of the Au glyconanoparticles as a function of lectin-carbohydrate interactions were measured and the dissociation constants were determined based on non-linear curve fitting. The strength of the interaction of carbohydrates with ConA was found to be as follows: maltose>mannose>glucose>lactose>MAN5.


Asunto(s)
Carbohidratos/química , Oro , Nanopartículas del Metal/química , Proteínas/química , Colorimetría/métodos , Concanavalina A/química , Hidrazinas/química , Microscopía Electrónica de Transmisión , Microondas , Oligosacáridos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA