Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 299(5): 103029, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36806681

RESUMEN

Vascular endothelial cells form the inner cellular lining of blood vessels and have myriad physiologic functions including angiogenesis and response to hypoxia. We recently identified a set of endothelial cell (EC)-enriched long noncoding RNAs (lncRNAs) in differentiated human primary cell types and described the role of the STEEL lncRNA in angiogenic patterning. We sought to further understand the role of EC-enriched lncRNAs in physiologic adaptation of the vascular endothelium. In this work, we describe an abundant, cytoplasmic, and EC-enriched lncRNA, GATA2-AS1, that is divergently transcribed from the EC-enriched developmental regulator, GATA2. While GATA2-AS1 is largely coexpressed with GATA2 in ECs, GATA2-AS1 and GATA2 appear to be complementary rather than synergistic as they have mostly distinct target genes. Common single nucleotide variants in GATA2-AS1 exons are associated with early-onset coronary artery disease and decreased expression of GATA2-AS1 in endothelial cell lines. In most cells, HIF1-α is central to the transcriptional response to hypoxia, while in ECs, both HIF1-α and HIF2-α are required to coordinate an acute and chronic response, respectively. In this setting, GATA2-AS1 contributes to the "HIF switch" and augments HIF1-α induction in acute hypoxia to regulate HIF1-α/HIF2-α balance. In hypoxia, GATA2-AS1 orchestrates HIF1-α-dependent induction of the glycolytic pathway and HIF1-α-independent maintenance of mitochondrial biogenesis. Similarly, GATA2-AS1 coordinates both metabolism and "tip/stalk" cell signaling to regulate angiogenesis in hypoxic ECs. Furthermore, we find that GATA2-AS1 expression patterns are perturbed in atherosclerotic disease. Together, these results define a role for GATA2-AS1 in the EC-specific response to hypoxia.


Asunto(s)
Factor de Transcripción GATA2 , Subunidad alfa del Factor 1 Inducible por Hipoxia , ARN Largo no Codificante , Transducción de Señal , Humanos , Células Endoteliales/metabolismo , Factor de Transcripción GATA2/genética , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
2.
Sci Rep ; 12(1): 14537, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36008455

RESUMEN

Angiogenesis is a critical process in tumor progression. Inhibition of angiogenesis by blocking VEGF signaling can impair existing tumor vessels and halt tumor progression. However, the benefits are transient, and most patients who initially respond to these therapies develop resistance. Accordingly, there is a need for new anti-angiogenesis therapeutics to delay the processes of resistance or eliminate the resistive effects entirely. This manuscript presents the results of a screen of the National Institutes of Health Clinical Collections Libraries I & II (NIHCCLI&II) for novel angiogenesis inhibitors. The 727 compounds of the NIHCCLI&II library were screened with a high-throughput drug discovery platform (HTP) developed previously with angiogenesis-specific protocols utilizing zebrafish. The screen resulted in 14 hit compounds that were subsequently narrowed down to one, with PD 81,723 chosen as the lead compound. PD 81,723 was validated as an inhibitor of angiogenesis in vivo in zebrafish and in vitro in human umbilical vein endothelial cells (HUVECs). Zebrafish exposed to PD 81,723 exhibited several signs of a diminished endothelial network due to the inhibition of angiogenesis. Immunochemical analysis did not reveal any significant apoptotic or mitotic activity in the zebrafish. Assays with cultured HUVECs elucidated the ability of PD 81,723 to inhibit capillary tube formation, migration, and proliferation of endothelial cells. In addition, PD 81,723 did not induce apoptosis while significantly down regulating p21, AKT, VEGFR-2, p-VEGFR-2, eNOS, and p-eNOS, with no notable change in endogenous VEGF-A in cultured HUVECs.


Asunto(s)
Inhibidores de la Angiogénesis , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Movimiento Celular , Proliferación Celular , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neovascularización Patológica/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular , Pez Cebra
3.
J Immunol ; 204(5): 1173-1187, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31996458

RESUMEN

Homogeneous populations of mature differentiated primary cell types can display variable responsiveness to extracellular stimuli, although little is known about the underlying mechanisms that govern such heterogeneity at the level of gene expression. In this article, we show that morphologically homogenous human endothelial cells exhibit heterogeneous expression of VCAM1 after TNF-α stimulation. Variability in VCAM1 expression was not due to stochasticity of intracellular signal transduction but rather to preexisting established heterogeneous states of promoter DNA methylation that were generationally conserved through mitosis. Variability in DNA methylation of the VCAM1 promoter resulted in graded RelA/p65 and RNA polymerase II binding that gave rise to a distribution of VCAM1 transcription in the population after TNF-α stimulation. Microarray analysis and single-cell RNA sequencing revealed that a number of cytokine-inducible genes shared this heterogeneous response pattern. These results show that heritable epigenetic heterogeneity is fundamental in inflammatory signaling and highlight VCAM1 as a metastable epiallele.


Asunto(s)
Epigénesis Genética/inmunología , Células Endoteliales de la Vena Umbilical Humana/inmunología , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Regiones Promotoras Genéticas/inmunología , ARN Polimerasa II/genética , ARN Polimerasa II/inmunología , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/inmunología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/inmunología
4.
J Biol Chem ; 293(12): 4381-4402, 2018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29414790

RESUMEN

Although the functional role of chromatin marks at promoters in mediating cell-restricted gene expression has been well characterized, the role of intragenic chromatin marks is not well understood, especially in endothelial cell (EC) gene expression. Here, we characterized the histone H3 and H4 acetylation profiles of 19 genes with EC-enriched expression via locus-wide chromatin immunoprecipitation followed by ultra-high-resolution (5 bp) tiling array analysis in ECs versus non-ECs throughout their genomic loci. Importantly, these genes exhibit differential EC enrichment of H3 and H4 acetylation in their promoter in ECs versus non-ECs. Interestingly, VEGFR-2 and VEGFR-1 show EC-enriched acetylation across broad intragenic regions and are up-regulated in non-ECs by histone deacetylase inhibition. It is unclear which histone acetyltransferases (KATs) are key to EC physiology. Depletion of KAT7 reduced VEGFR-2 expression and disrupted angiogenic potential. Microarray analysis of KAT7-depleted ECs identified 263 differentially regulated genes, many of which are key for growth and angiogenic potential. KAT7 inhibition in zebrafish embryos disrupted vessel formation and caused loss of circulatory integrity, especially hemorrhage, all of which were rescued with human KAT7. Notably, perturbed EC-enriched gene expression, especially the VEGFR-2 homologs, contributed to these vascular defects. Mechanistically, KAT7 participates in VEGFR-2 transcription by mediating RNA polymerase II binding, H3 lysine 14, and H4 acetylation in its intragenic region. Collectively, our findings support the importance of differential histone acetylation at both promoter and intragenic regions of EC genes and reveal a previously underappreciated role of KAT7 and intragenic histone acetylation in regulating VEGFR-2 and endothelial function.


Asunto(s)
Cromatina/química , Endotelio Vascular/metabolismo , Regulación de la Expresión Génica , Histona Acetiltransferasas/metabolismo , Histonas/química , Pez Cebra/metabolismo , Acetilación , Animales , Células Cultivadas , Cromatina/metabolismo , Endotelio Vascular/citología , Histona Acetiltransferasas/genética , Histonas/metabolismo , Humanos , Regiones Promotoras Genéticas , Procesamiento Proteico-Postraduccional , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/crecimiento & desarrollo
5.
Proc Natl Acad Sci U S A ; 115(10): 2401-2406, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29467285

RESUMEN

Endothelial cell (EC)-enriched protein coding genes, such as endothelial nitric oxide synthase (eNOS), define quintessential EC-specific physiologic functions. It is not clear whether long noncoding RNAs (lncRNAs) also define cardiovascular cell type-specific phenotypes, especially in the vascular endothelium. Here, we report the existence of a set of EC-enriched lncRNAs and define a role for spliced-transcript endothelial-enriched lncRNA (STEEL) in angiogenic potential, macrovascular/microvascular identity, and shear stress responsiveness. STEEL is expressed from the terminus of the HOXD locus and is transcribed antisense to HOXD transcription factors. STEEL RNA increases the number and integrity of de novo perfused microvessels in an in vivo model and augments angiogenesis in vitro. The STEEL RNA is polyadenylated, nuclear enriched, and has microvascular predominance. Functionally, STEEL regulates a number of genes in diverse ECs. Of interest, STEEL up-regulates both eNOS and the transcription factor Kruppel-like factor 2 (KLF2), and is subject to feedback inhibition by both eNOS and shear-augmented KLF2. Mechanistically, STEEL up-regulation of eNOS and KLF2 is transcriptionally mediated, in part, via interaction of chromatin-associated STEEL with the poly-ADP ribosylase, PARP1. For instance, STEEL recruits PARP1 to the KLF2 promoter. This work identifies a role for EC-enriched lncRNAs in the phenotypic adaptation of ECs to both body position and hemodynamic forces and establishes a newer role for lncRNAs in the transcriptional regulation of EC identity.


Asunto(s)
Cromatina/metabolismo , Células Endoteliales , Neovascularización Fisiológica , ARN Largo no Codificante , Animales , Células Cultivadas , Células Endoteliales/citología , Células Endoteliales/metabolismo , Endotelio Vascular/citología , Hemodinámica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones SCID , Neovascularización Fisiológica/genética , Neovascularización Fisiológica/fisiología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
6.
Med Epigenet ; 2(1): 37-52, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25408699

RESUMEN

Genome-wide association studies (GWAS) have become a powerful tool in the identification of disease-associated variants. Unfortunately, many of these studies have found that the estimated variability in cardiovascular disease risk cannot be fully explained by traditional paradigms of genetic variation in protein coding genes. Moreover, traditional views do not sufficiently explain the well-known link between cardiovascular disease and environmental influence. We posit that epigenetics, defined as chromatin-based mechanisms important in the regulation of gene expression that do not involve changes in the DNA sequence per se, represents the missing link. The nuclear-based mechanisms that contribute to epigenetic gene regulation can be broadly separated into three unique but highly interrelated processes: DNA methylation and hydroxymethylation; histone density and post-translational modifications; and RNA-based mechanisms. Together they complement the cis/trans perspective on transcriptional control paradigms in blood vessels. Moreover, it provides a molecular basis for understanding how the environment impacts the genome to modify cardiovascular disease risk over the lifetime of a cell and its offspring. This review provides an introduction to epigenetic function and cardiovascular disease, with a focus on endothelial cell biology. Additionally, we highlight emerging concepts on epigenetic gene regulation that are highly relevant to atherosclerosis and coronary artery disease.

7.
Mol Cell Biol ; 33(10): 2029-46, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23478261

RESUMEN

Human endothelial nitric oxide synthase (eNOS) mRNA is highly stable in endothelial cells (ECs). Posttranscriptional regulation of eNOS mRNA stability is an important component of eNOS regulation, especially under hypoxic conditions. Here, we show that the human eNOS 3' untranslated region (3' UTR) contains multiple, evolutionarily conserved pyrimidine (C and CU)-rich sequence elements that are both necessary and sufficient for mRNA stabilization. Importantly, RNA immunoprecipitations and RNA electrophoretic mobility shift assays (EMSAs) revealed the formation of heterogeneous nuclear ribonucleoprotein E1 (hnRNP E1)-containing RNP complexes at these 3'-UTR elements. Knockdown of hnRNP E1 decreased eNOS mRNA half-life, mRNA levels, and protein expression. Significantly, these stabilizing RNP complexes protect eNOS mRNA from the inhibitory effects of its antisense transcript sONE and 3'-UTR-targeting small interfering RNAs (siRNAs), as well as microRNAs, specifically, hsa-miR-765, which targets eNOS mRNA stability determinants. Hypoxia disrupts hnRNP E1/eNOS 3'-UTR interactions via increased Akt-mediated serine phosphorylation (including serine 43) and increased nuclear localization of hnRNP E1. These mechanisms account, at least in part, for the decrease in eNOS mRNA stability under hypoxic conditions. Thus, the stabilization of human eNOS mRNA by hnRNP E1-containing RNP complexes serves as a key protective mechanism against the posttranscriptional inhibitory effects of antisense RNA and microRNAs under basal conditions but is disrupted under hypoxic conditions.


Asunto(s)
Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , MicroARNs/genética , Óxido Nítrico Sintasa de Tipo III/genética , Interferencia de ARN , Estabilidad del ARN , Regiones no Traducidas 3' , Animales , Elementos de Respuesta Antioxidante , Secuencia de Bases , Sitios de Unión , Hipoxia de la Célula , Células Cultivadas , ARN Helicasas DEAD-box/metabolismo , Proteínas de Unión al ADN , Semivida , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Óxido Nítrico Sintasa de Tipo III/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN , Conejos , Ribonucleasa III/metabolismo , Ribonucleoproteínas/metabolismo
8.
J Biol Chem ; 287(34): 29003-20, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22745131

RESUMEN

The processes by which cells sense and respond to ambient oxygen concentration are fundamental to cell survival and function, and they commonly target gene regulatory events. To date, however, little is known about the link between the microRNA pathway and hypoxia signaling. Here, we show in vitro and in vivo that chronic hypoxia impairs Dicer (DICER1) expression and activity, resulting in global consequences on microRNA biogenesis. We show that von Hippel-Lindau-dependent down-regulation of Dicer is key to the expression and function of hypoxia-inducible factor α (HIF-α) subunits. Specifically, we show that EPAS1/HIF-2α is regulated by the Dicer-dependent microRNA miR-185, which is down-regulated by hypoxia. Full expression of hypoxia-responsive/HIF target genes in chronic hypoxia (e.g. VEGFA, FLT1/VEGFR1, KDR/VEGFR2, BNIP3L, and SLC2A1/GLUT1), the function of which is to regulate various adaptive responses to compromised oxygen availability, is also dependent on hypoxia-mediated down-regulation of Dicer function and changes in post-transcriptional gene regulation. Therefore, functional deficiency of Dicer in chronic hypoxia is relevant to both HIF-α isoforms and hypoxia-responsive/HIF target genes, especially in the vascular endothelium. These findings have relevance to emerging therapies given that we show that the efficacy of RNA interference under chronic hypoxia, but not normal oxygen availability, is Dicer-dependent. Collectively, these findings show that the down-regulation of Dicer under chronic hypoxia is an adaptive mechanism that serves to maintain the cellular hypoxic response through HIF-α- and microRNA-dependent mechanisms, thereby providing an essential mechanistic insight into the oxygen-dependent microRNA regulatory pathway.


Asunto(s)
Adaptación Fisiológica/fisiología , ARN Helicasas DEAD-box/biosíntesis , Endotelio Vascular/enzimología , Regulación Enzimológica de la Expresión Génica/fisiología , Oxígeno/metabolismo , Ribonucleasa III/biosíntesis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Hipoxia de la Célula , ARN Helicasas DEAD-box/genética , Endotelio Vascular/citología , Transportador de Glucosa de Tipo 1/biosíntesis , Transportador de Glucosa de Tipo 1/genética , Células Hep G2 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , MicroARNs/biosíntesis , MicroARNs/genética , Proteínas Proto-Oncogénicas/biosíntesis , Proteínas Proto-Oncogénicas/genética , Ribonucleasa III/genética , Proteínas Supresoras de Tumor/biosíntesis , Proteínas Supresoras de Tumor/genética , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/biosíntesis , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/biosíntesis , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
9.
J Clin Invest ; 122(2): 759-76, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22232208

RESUMEN

Hemolytic uremic syndrome (HUS) is a potentially life-threatening condition. It often occurs after gastrointestinal infection with E. coli O157:H7, which produces Shiga toxins (Stx) that cause hemolytic anemia, thrombocytopenia, and renal injury. Stx-mediated changes in endothelial phenotype have been linked to the pathogenesis of HUS. Here we report our studies investigating Stx-induced changes in gene expression and their contribution to the pathogenesis of HUS. Stx function by inactivating host ribosomes but can also alter gene expression at concentrations that minimally affect global protein synthesis. Gene expression profiling of human microvascular endothelium treated with Stx implicated a role for activation of CXCR4 and CXCR7 by their shared cognate chemokine ligand (stromal cell-derived factor-1 [SDF-1]) in Stx-mediated pathophysiology. The changes in gene expression required a catalytically active Stx A subunit and were mediated by enhanced transcription and mRNA stability. Stx also enhanced the association of CXCR4, CXCR7, and SDF1 mRNAs with ribosomes. In a mouse model of Stx-mediated pathology, we noted changes in plasma and tissue content of CXCR4, CXCR7, and SDF-1 after Stx exposure. Furthermore, inhibition of the CXCR4/SDF-1 interaction decreased endothelial activation and organ injury and improved animal survival. Finally, in children infected with E. coli O157:H7, plasma SDF-1 levels were elevated in individuals who progressed to HUS. Collectively, these data implicate the CXCR4/CXCR7/SDF-1 pathway in Stx-mediated pathogenesis and suggest novel therapeutic strategies for prevention and/or treatment of complications associated with E. coli O157:H7 infection.


Asunto(s)
Quimiocina CXCL12/metabolismo , Síndrome Hemolítico-Urémico/etiología , Síndrome Hemolítico-Urémico/fisiopatología , Receptores CXCR4/metabolismo , Receptores CXCR/metabolismo , Toxinas Shiga/toxicidad , Animales , Línea Celular , Quimiocina CXCL12/genética , Niño , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Infecciones por Escherichia coli/complicaciones , Escherichia coli O157/metabolismo , Escherichia coli O157/patogenicidad , Expresión Génica/efectos de los fármacos , Síndrome Hemolítico-Urémico/patología , Humanos , Riñón/patología , Riñón/fisiopatología , Ratones , Análisis por Micromatrices , Análisis de Secuencia por Matrices de Oligonucleótidos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/metabolismo , Receptores CXCR/genética , Receptores CXCR4/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA