Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(15): 158102, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38682980

RESUMEN

Electrophoresis is the motion of particles relative to a surrounding fluid driven by a uniform electric field. In conventional electrophoresis, the electrophoretic velocity grows linearly with the applied field. Nonlinear effects with a quadratic speed vs field dependence are gaining research interest since an alternating current field could drive them. Here, we report on the giant nonlinearity of electrophoresis in a nematic liquid crystal in which the speed grows with the fourth and sixth powers of the electric field. The mechanism is attributed to the shear thinning of the nematic environment induced by the moving colloid. The observed giant nonlinear effect dramatically enhances the efficiency of electrophoretic transport.

2.
Soft Matter ; 17(21): 5444, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34008664

RESUMEN

Correction for 'Shear-induced polydomain structures of nematic lyotropic chromonic liquid crystal disodium cromoglycate' by Hend Baza et al., Soft Matter, 2020, 16, 8565-8576.

3.
Soft Matter ; 16(37): 8565-8576, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32785364

RESUMEN

Lyotropic chromonic liquid crystals (LCLCs) represent aqueous dispersions of organic disk-like molecules that form cylindrical aggregates. Despite the growing interest in these materials, their flow behavior is poorly understood. Here, we explore the effect of shear on dynamic structures of the nematic LCLC, formed by 14 wt% water dispersion of disodium cromoglycate (DSCG). We employ in situ polarizing optical microscopy (POM) and small-angle and wide-angle X-ray scattering (SAXS/WAXS) to obtain independent and complementary information on the director structures over a wide range of shear rates. The DSCG nematic shows a shear-thinning behavior with two shear-thinning regions (Region I at [small gamma, Greek, dot above] < 1 s-1 and Region III at [small gamma, Greek, dot above] > 10 s-1) separated by a pseudo-Newtonian Region II (1 s-1 < [small gamma, Greek, dot above] < 10 s-1). The material is of a tumbling type. In Region I, [small gamma, Greek, dot above] < 1 s-1, the director realigns along the vorticity axis. An increase of [small gamma, Greek, dot above] above 1 s-1 triggers nucleation of disclination loops. The disclinations introduce patches of the director that deviates from the vorticity direction and form a polydomain texture. Extension of the domains along the flow and along the vorticity direction decreases with the increase of the shear rate to 10 s-1. Above 10 s-1, the domains begin to elongate along the flow. At [small gamma, Greek, dot above] > 100 s-1, the texture evolves into periodic stripes in which the director is predominantly along the flow with left and right tilts. The period of stripes decreases with an increase of [small gamma, Greek, dot above]. The shear-induced transformations are explained by the balance of the elastic and viscous energies. In particular, nucleation of disclinations is associated with an increase of the elastic energy at the walls separating nonsingular domains with different director tilts. The uncovered shear-induced structural effects would be of importance in the further development of LCLC applications.

4.
Sci Adv ; 6(20): eaaz6485, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32426499

RESUMEN

Eukaryotic cells in living tissues form dynamic patterns with spatially varying orientational order that affects important physiological processes such as apoptosis and cell migration. The challenge is how to impart a predesigned map of orientational order onto a growing tissue. Here, we demonstrate an approach to produce cell monolayers of human dermal fibroblasts with predesigned orientational patterns and topological defects using a photoaligned liquid crystal elastomer (LCE) that swells anisotropically in an aqueous medium. The patterns inscribed into the LCE are replicated by the tissue monolayer and cause a strong spatial variation of cells phenotype, their surface density, and number density fluctuations. Unbinding dynamics of defect pairs intrinsic to active matter is suppressed by anisotropic surface anchoring allowing the estimation of the elastic characteristics of the tissues. The demonstrated patterned LCE approach has potential to control the collective behavior of cells in living tissues, cell differentiation, and tissue morphogenesis.


Asunto(s)
Cristales Líquidos , Anisotropía , Elastómeros/química , Fibroblastos , Humanos , Cristales Líquidos/química , Agua
5.
J Biomed Mater Res A ; 108(5): 1223-1230, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32034939

RESUMEN

Control of cells behavior through topography of substrates is an important theme in biomedical applications. Among many materials used as substrates, polymers show advantages since they can be tailored by chemical functionalization. Fabrication of polymer substrates with nano- and microscale topography requires processing by lithography, microprinting, etching, and so forth. In this work, we introduce a different approach based on anisotropic elastic properties of polymerized smectic A (SmA) liquid crystal elastomer (LCE). When the SmA liquid crystal coating is deposited onto a substrate with planar alignment of the molecules, it develops nanogrooves at its free surface. After photopolymerization, these nanogrooves show an excellent ability to align human dermal fibroblasts over large areas. The alignment quality is good for both bare SmA LCE substrates and for substrates coated with fibronectin. The SmA LCE nano-topographies show a high potential for tissue engineering.


Asunto(s)
Elastómeros/química , Fibroblastos/citología , Cristales Líquidos/química , Nanoestructuras/química , Anisotropía , Materiales Biocompatibles/química , Adhesión Celular , Línea Celular , Humanos , Análisis de Matrices Tisulares/instrumentación , Ingeniería de Tejidos/instrumentación
6.
ACS Macro Lett ; 9(7): 1034-1039, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35648614

RESUMEN

Concentrated solutions of blunt-ended DNA oligomer duplexes self-assemble in living polymers and order into lyotropic nematic liquid crystal phase. Using the optical torque provided by three distinct illumination geometries, we induce independent splay, twist, and bend deformations of the DNA nematic and measure the corresponding elastic coefficients K1, K2, and K3, and viscosities ηsplay, ηtwist, and ηbend. We find the viscoelasticity of the system to be remarkably soft, as the viscoelastic coefficients are smaller than in other lyotropic liquid crystals. We find K1 > K3 > K2, in agreement with the elasticity of the nematic phase of flexible polymers, and ηbend > ηsplay > ηtwist a behavior that is nonconventional in the context of chromonic, polymeric, and thermotropic liquid crystals, indicating a possible role of the weakness and reversibility of the DNA aggregates.

7.
Phys Chem Chem Phys ; 21(24): 13078-13089, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31168534

RESUMEN

We report dynamic light scattering measurements of the orientational (Frank) elastic constants and associated viscosities among a homologous series of a liquid crystalline dimer, trimer, and tetramer exhibiting a uniaxial nematic (N) to twist-bend nematic (NTB) phase transition. The elastic constants for director splay (K11), twist (K22) and bend (K33) exhibit the relations K11 > K22 > K33 and K11/K22 > 2 over the bulk of the N phase. Their behavior near the N-NTB transition shows dependency on the parity of the number (n) of the rigid mesomorphic units in the flexible n-mers. Namely, the bend constant K33 in the dimer and tetramer turns upward and starts increasing close to the transition, following a monotonic decrease through most of the N phases. In contrast, K33 for the trimer flattens off just above the transition and shows no pretransitional enhancement. The twist constant K22 increases pretransitionally in both even and odd n-mers, but more weakly so in the trimer, while K11 increases steadily on cooling without evidence of pretransitional behavior in any n-mer. The viscosities associated with pure splay, twist-dominated twist-bend, and pure bend fluctuations in the N phase are comparable in magnitude to those of rod-like monomers. All three viscosities increase with decreasing temperature, but the bend viscosity in particular grows sharply near the N-NTB transition. The N-NTB pretransitional behavior is shown to be in qualitative agreement with the predictions of a coarse-grained theory, which models the NTB phase as a "pseudo-layered" structure with the symmetry (but not the mass density wave) of a smectic-A* phase.

8.
Adv Mater ; 31(18): e1808028, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30907480

RESUMEN

Microlenses are desired by a wide range of industrial applications while it is always challenging to make them with diffraction-limited quality. Here, it is shown that high-quality microlenses based on Pancharatnam-Berry (PB) phases can be made with liquid crystal polymers by using a plasmonic photopatterning technique. Based on the generalized Snell's law for the PB phases, PB microlenses with a range of focal lengths and f-numbers are designed and fabricated and their point-spread functions and ability to image micrometer-sized particles are carefully characterized. The results show that these PB microlenses with f-number down to 2 are all diffraction-limited. The capability of arraying these PB microlenses with 100% filling factor with a step-and-flash approach is further demonstrated.

9.
Nat Commun ; 9(1): 3528, 2018 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-30166538

RESUMEN

The original version of this article contained an error in the description of Supplementary Movie 7, which incorrectly read 'Collision resulting in annihilation of two solitons. U = 45.1 V, f = 600 Hz, T = 50 °C, d = 8.0 µm. The original movie is taken at the frame rate of 91 fps. The playback speed is 7 fps.' The correct version reads 'Death of a soliton at a dust particle. U = 65.6 V, f = 800 Hz, T = 50 °C, d = 7.7 µm. The original movie is taken at the frame rate of 92 fps. The playback speed is 7 fps.' The HTML has been updated to include a corrected version of the 'Description of Additional Supplementary Files' file.

10.
Nat Commun ; 9(1): 2912, 2018 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-30046035

RESUMEN

Electric field-induced collective reorientation of nematic molecules is of importance for fundamental science and practical applications. This reorientation is either homogeneous over the area of electrodes, as in displays, or periodically modulated, as in electroconvection. The question is whether spatially localized three-dimensional solitary waves of molecular reorientation could be created. Here we demonstrate that the electric field can produce particle-like propagating solitary waves representing self-trapped "bullets" of oscillating molecular director. These director bullets lack fore-aft symmetry and move with very high speed perpendicularly to the electric field and to the initial alignment direction. The bullets are true solitons that preserve spatially confined shapes and survive collisions. The solitons are topologically equivalent to the uniform state and have no static analogs, thus exhibiting a particle-wave duality. Their shape, speed, and interactions depend strongly on the material parameters, which opens the door for a broad range of future studies.

11.
Nat Commun ; 9(1): 1130, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29540690

RESUMEN

The original version of this Article contained errors in Figs. 1a, 2a, 3a, and 4b, in which the units on the scale bars incorrectly read 'µm' rather than the correct 'nm.' This has been corrected in both the PDF and HTML versions of the Article.

12.
Nat Commun ; 9(1): 456, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29386512

RESUMEN

Stimuli-responsive liquid crystal elastomers with molecular orientation coupled to rubber-like elasticity show a great potential as elements in soft robotics, sensing, and transport systems. The orientational order defines their mechanical response to external stimuli, such as thermally activated muscle-like contraction. Here we demonstrate a dynamic thermal control of the surface topography of an elastomer prepared as a coating with a pattern of in-plane molecular orientation. The inscribed pattern determines whether the coating develops elevations, depressions, or in-plane deformations when the temperature changes. The deterministic dependence of the out-of-plane dynamic profile on the in-plane orientation is explained by activation forces. These forces are caused by stretching-contraction of the polymer networks and by spatially varying molecular orientation. The activation force concept brings the responsive liquid crystal elastomers into the domain of active matter. The demonstrated relationship can be used to design coatings with functionalities that mimic biological tissues such as skin.

13.
Adv Mater ; 29(21)2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28295687

RESUMEN

Controlling supramolecular self-assembly in water-based solutions is an important problem of interdisciplinary character that impacts the development of many functional materials and systems. Significant progress in aqueous self-assembly and templating has been demonstrated by using lyotropic chromonic liquid crystals (LCLCs) as these materials show spontaneous orientational order caused by unidirectional stacking of plank-like molecules into elongated aggregates. In this work, it is demonstrated that the alignment direction of chromonic assemblies can be patterned into complex spatially-varying structures with very high micrometer-scale precision. The approach uses photoalignment with light beams that exhibit a spatially-varying direction of light polarization. The state of polarization is imprinted into a layer of photosensitive dye that is protected against dissolution into the LCLC by a liquid crystalline polymer layer. The demonstrated level of control over the spatial orientation of LCLC opens opportunities for engineering materials and devices for optical and biological applications.

14.
J Phys Condens Matter ; 29(1): 014005, 2017 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-27830662

RESUMEN

Placing colloidal particles in predesigned sites represents a major challenge of the current state-of-the-art colloidal science. Nematic liquid crystals with spatially varying director patterns represent a promising approach to achieve a well-controlled placement of colloidal particles thanks to the elastic forces between the particles and the surrounding landscape of molecular orientation. Here we demonstrate how the spatially varying director field can be used to control placement of non-spherical particles of boomerang shape. The boomerang colloids create director distortions of a dipolar symmetry. When a boomerang particle is placed in a periodic splay-bend director pattern, it migrates towards the region of a maximum bend. The behavior is contrasted to that one of spherical particles with normal surface anchoring, which also produce dipolar director distortions, but prefer to compartmentalize into the regions with a maximum splay. The splay-bend periodic landscape thus allows one to spatially separate these two types of particles. By exploring overdamped dynamics of the colloids, we determine elastic driving forces responsible for the preferential placement. Control of colloidal locations through patterned molecular orientation can be explored for future applications in microfluidic, lab on a chip, sensing and sorting devices.

15.
Science ; 354(6314): 882-885, 2016 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-27856907

RESUMEN

Self-propelled bacteria are marvels of nature with a potential to power dynamic materials and microsystems of the future. The challenge lies in commanding their chaotic behavior. By dispersing swimming Bacillus subtilis in a liquid crystalline environment with spatially varying orientation of the anisotropy axis, we demonstrate control over the distribution of bacterial concentration, as well as the geometry and polarity of their trajectories. Bacteria recognize subtle differences in liquid crystal deformations, engaging in bipolar swimming in regions of pure splay and bend but switching to unipolar swimming in mixed splay-bend regions. They differentiate topological defects, heading toward defects of positive topological charge and avoiding negative charges. Sensitivity of bacteria to preimposed orientational patterns represents a previously unknown facet of the interplay between hydrodynamics and topology of active matter.


Asunto(s)
Bacillus subtilis/fisiología , Cristales Líquidos , Locomoción , Anisotropía , Hidrodinámica , Microscopía de Polarización
16.
Sci Adv ; 2(9): e1600932, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27652343

RESUMEN

Colloids self-assemble into various organized superstructures determined by particle interactions. There is tremendous progress in both the scientific understanding and the applications of self-assemblies of single-type identical particles. Forming superstructures in which the colloidal particles occupy predesigned sites and remain in these sites despite thermal fluctuations represents a major challenge of the current state of the art. We propose a versatile approach to directing placement of colloids using nematic liquid crystals with spatially varying molecular orientation preimposed by substrate photoalignment. Colloidal particles in a nematic environment are subject to the long-range elastic forces originating in the orientational order of the nematic. Gradients of the orientational order create an elastic energy landscape that drives the colloids into locations with preferred type of deformations. As an example, we demonstrate that colloidal spheres with perpendicular surface anchoring are driven into the regions of maximum splay, whereas spheres with tangential surface anchoring settle into the regions of bend. Elastic forces responsible for preferential placement are measured by exploring overdamped dynamics of the colloids. Control of colloidal self-assembly through patterned molecular orientation opens new opportunities for designing materials and devices in which particles should be placed in predesigned locations.


Asunto(s)
Coloides/química , Cristales Líquidos/química , Modelos Químicos , Modelos Moleculares , Simulación por Computador , Cristalización , Conformación Molecular , Simulación de Dinámica Molecular , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...