Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Clin Transl Sci ; 17(1): e13699, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38129972

RESUMEN

The DPYD gene encodes dihydropyrimidine dehydrogenase, the rate-limiting enzyme for the metabolism of fluoropyrimidines 5-fluorouracil and capecitabine. Genetic variants in DPYD have been associated with altered enzyme activity, therefore accurate detection and interpretation is critical to predict metabolizer status for individualized fluoropyrimidine therapy. The most commonly observed deleterious variation is the causal variant linked to the previously described HapB3 haplotype, c.1129-5923C>G (rs75017182) in intron 10, which introduces a cryptic splice site. A benign synonymous variant in exon 11, c.1236G>A (rs56038477) is also linked to HapB3 and is commonly used for testing. Previously, these single-nucleotide polymorphisms (SNPs) have been reported to be in perfect linkage disequilibrium (LD); therefore, c.1236G>A is often utilized as a proxy for the function-altering intronic variant. Clinical genotyping of DPYD identified a patient who had c.1236G>A, but not c.1129-5923C>G, suggesting that these two SNPs may not be in perfect LD, as previously assumed. Additional individuals with c.1236G>A, but not c.1129-5923C>G, were identified in the Children's Mercy Data Warehouse and the All of Us Research Program version 7 cohort substantiating incomplete SNP linkage. Consequently, testing only c.1236G>A can generate false-positive results in some cases and lead to suboptimal dosing that may negatively impact patient therapy and prospect of survival. Our data show that DPYD genotyping should include the functional variant c.1129-5923C>G, and not the c.1236G>A proxy, to accurately predict DPD activity.


Asunto(s)
Dihidrouracilo Deshidrogenasa (NADP) , Salud Poblacional , Niño , Humanos , Dihidrouracilo Deshidrogenasa (NADP)/metabolismo , Haplotipos , Antimetabolitos Antineoplásicos , Pruebas de Farmacogenómica , Genotipo
3.
Clin Pharmacol Ther ; 114(6): 1220-1237, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37669183

RESUMEN

The Pharmacogene Variation Consortium (PharmVar) provides nomenclature for the highly polymorphic human CYP2D6 gene locus and a comprehensive summary of structural variation. CYP2D6 contributes to the metabolism of numerous drugs and, thus, genetic variation in its gene impacts drug efficacy and safety. To accurately predict a patient's CYP2D6 phenotype, testing must include structural variants including gene deletions, duplications, hybrid genes, and combinations thereof. This tutorial offers a comprehensive overview of CYP2D6 structural variation, terms, and definitions, a review of methods suitable for their detection and characterization, and practical examples to address the lack of standards to describe CYP2D6 structural variants or any other pharmacogene. This PharmVar tutorial offers practical guidance on how to detect the many, often complex, structural variants, as well as recommends terms and definitions for clinical and research reporting. Uniform reporting is not only essential for electronic health record-keeping but also for accurate translation of a patient's genotype into phenotype which is typically utilized to guide drug therapy.


Asunto(s)
Citocromo P-450 CYP2D6 , Humanos , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Genotipo , Fenotipo , Alelos
4.
Front Pharmacol ; 14: 1195778, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426826

RESUMEN

Complex regions in the human genome such as repeat motifs, pseudogenes and structural (SVs) and copy number variations (CNVs) present ongoing challenges to accurate genetic analysis, particularly for short-read Next-Generation-Sequencing (NGS) technologies. One such region is the highly polymorphic CYP2D loci, containing CYP2D6, a clinically relevant pharmacogene contributing to the metabolism of >20% of common drugs, and two highly similar pseudogenes, CYP2D7 and CYP2D8. Multiple complex SVs, including CYP2D6/CYP2D7-derived hybrid genes are known to occur in different configurations and frequencies across populations and are difficult to detect and characterize accurately. This can lead to incorrect enzyme activity assignment and impact drug dosing recommendations, often disproportionally affecting underrepresented populations. To improve CYP2D6 genotyping accuracy, we developed a PCR-free CRISPR-Cas9 based enrichment method for targeted long-read sequencing that fully characterizes the entire CYP2D6-CYP2D7-CYP2D8 loci. Clinically relevant sample types, including blood, saliva, and liver tissue were sequenced, generating high coverage sets of continuous single molecule reads spanning the entire targeted region of up to 52 kb, regardless of SV present (n = 9). This allowed for fully phased dissection of the entire loci structure, including breakpoints, to accurately resolve complex CYP2D6 diplotypes with a single assay. Additionally, we identified three novel CYP2D6 suballeles, and fully characterized 17 CYP2D7 and 18 CYP2D8 unique haplotypes. This method for CYP2D6 genotyping has the potential to significantly improve accurate clinical phenotyping to inform drug therapy and can be adapted to overcome testing limitations of other clinically challenging genomic regions.

5.
J Mol Diagn ; 25(9): 655-664, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37354993

RESUMEN

Pharmacogenetic testing for CYP3A4 is increasingly provided by clinical and research laboratories; however, only a limited number of quality control and reference materials are currently available for many of the CYP3A4 variants included in clinical tests. To address this need, the Division of Laboratory Systems, CDC-based Genetic Testing Reference Material Coordination Program (GeT-RM), in collaboration with members of the pharmacogenetic testing and research communities and the Coriell Institute for Medical Research, has characterized 30 DNA samples derived from Coriell cell lines for CYP3A4. Samples were distributed to five volunteer laboratories for genotyping using a variety of commercially available and laboratory-developed tests. Sanger and next-generation sequencing were also utilized by some of the laboratories. Whole-genome sequencing data from the 1000 Genomes Projects were utilized to inform genotype. Twenty CYP3A4 alleles were identified in the 30 samples characterized for CYP3A4: CYP3A4∗4, ∗5, ∗6, ∗7, ∗8, ∗9, ∗10, ∗11, ∗12, ∗15, ∗16, ∗18, ∗19, ∗20, ∗21, ∗22, ∗23, ∗24, ∗35, and a novel allele, CYP3A4∗38. Nineteen additional samples with preexisting data for CYP3A4 or CYP3A5 were re-analyzed to generate comprehensive reference material panels for these genes. These publicly available and well-characterized materials can be used to support the quality assurance and quality control programs of clinical laboratories performing clinical pharmacogenetic testing.


Asunto(s)
Citocromo P-450 CYP3A , Pruebas Genéticas , Humanos , Citocromo P-450 CYP3A/genética , Alelos , Genotipo , ADN/genética
6.
J Pers Med ; 12(10)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36294714

RESUMEN

The CYP2D6 gene has been widely studied to characterize variants and/or star alleles, which account for a significant portion of variability in drug responses observed within and between populations. However, African populations remain under-represented in these studies. The increasing availability of high coverage genomes from African populations has provided the opportunity to fill this knowledge gap. In this study, we characterized computationally predicted novel CYP2D6 star alleles in 30 African subjects for whom DNA samples were available from the Coriell Institute. CYP2D6 genotyping and resequencing was performed using a variety of commercially available and laboratory-developed tests in a collaborative effort involving three laboratories. Fourteen novel CYP2D6 alleles and multiple novel suballeles were identified. This work adds to the growing catalogue of validated African ancestry CYP2D6 allelic variation in pharmacogenomic databases, thus laying the foundation for future functional studies and improving the accuracy of CYP2D6 genotyping, phenotype prediction, and the refinement of clinical pharmacogenomic implementation guidelines in African and global settings.

7.
Front Genet ; 12: 588452, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679876

RESUMEN

Background: Indices of left ventricular (LV) structure and geometry represent useful intermediate phenotypes related to LV hypertrophy (LVH), a predictor of cardiovascular (CV) disease (CVD) outcomes. Methods and Results: We conducted an exome-wide association study of LV mass (LVM) adjusted to height2.7, LV internal diastolic dimension (LVIDD), and relative wall thickness (RWT) among 1,364 participants of African ancestry (AAs) in the Hypertension Genetic Epidemiology Network (HyperGEN). Both single-variant and gene-based sequence kernel association tests were performed to examine whether common and rare coding variants contribute to variation in echocardiographic traits in AAs. We then used a data-driven procedure to prioritize and select genes for functional validation using a human induced pluripotent stem cell cardiomyocyte (hiPSC-CM) model. Three genes [myosin VIIA and Rab interacting protein (MYRIP), trafficking protein particle complex 11 (TRAPPC11), and solute carrier family 27 member 6 (SLC27A6)] were prioritized based on statistical significance, variant functional annotations, gene expression in the hiPSC-CM model, and prior biological evidence and were subsequently knocked down in the hiPSC-CM model. Expression profiling of hypertrophic gene markers in the knockdowns suggested a decrease in hypertrophic expression profiles. MYRIP knockdowns showed a significant decrease in atrial natriuretic factor (NPPA) and brain natriuretic peptide (NPPB) expression. Knockdowns of the heart long chain fatty acid (FA) transporter SLC27A6 resulted in downregulated caveolin 3 (CAV3) expression, which has been linked to hypertrophic phenotypes in animal models. Finally, TRAPPC11 knockdown was linked to deficient calcium handling. Conclusions: The three genes are biologically plausible candidates that provide new insight to hypertrophic pathways.

8.
J Mol Diagn ; 23(5): 577-588, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33631352

RESUMEN

Cytochrome P450 2D6 (CYP2D6) copy number (CN) variation affects the metabolism of numerous prescribed drugs. Sequence variation within primer or probe target regions of hydrolysis probe CN assays can generate false-positive calls for CN loss. Furthermore, CYP2D6-CYP2D7 hybrids and gene conversions can cause difficult to interpret discordant CN calls. The identification of haplotypes with CN variations and structural arrangements is important to predict phenotype accurately. During clinical testing with hydrolysis probe assays targeting three CYP2D6 regions (intron 2, intron 6, and exon 9), samples with haplotypes causing inconsistent CN calls were identified. To resolve these cases, next-generation sequencing and allele-specific Sanger sequencing was performed. Sequence analysis of 16 samples, all but one from subjects of African descent, identified six novel suballeles containing single-nucleotide polymorphisms, which cause false-positive calls for CN loss in introns 2 and 6. Five samples with an exon 9 CN loss contained CYP2D6/CYP2D7 hybrids (∗13 or ∗36) and one sample was found to have a novel haplotype, CYP2D6∗141. Interestingly, CYP2D6∗141 contains a CYP2D7-derived exon 9 conversion and core single-nucleotide polymorphisms that are otherwise found in CYP2D6∗17 and ∗27. Although these variants are rare, they can cause inconsistent CN calls that typically are reported as no calls or indeterminant, and thus may deprive patients, particularly those of African descent, from taking full benefit of pharmacogenetic testing.


Asunto(s)
Citocromo P-450 CYP2D6/genética , Variaciones en el Número de Copia de ADN , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo Genético , Alelos , Frecuencia de los Genes , Humanos , Fenotipo
9.
Clin Pharmacol Ther ; 107(1): 154-170, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31544239

RESUMEN

The Pharmacogene Variation Consortium (PharmVar) provides nomenclature for the highly polymorphic human CYP2D6 gene locus. CYP2D6 genetic variation impacts the metabolism of numerous drugs and, thus, can impact drug efficacy and safety. This GeneFocus provides a comprehensive overview and summary of CYP2D6 genetic variation and describes how the information provided by PharmVar is utilized by the Pharmacogenomics Knowledgebase (PharmGKB) and the Clinical Pharmacogenetics Implementation Consortium (CPIC).


Asunto(s)
Citocromo P-450 CYP2D6/genética , Bases del Conocimiento , Farmacogenética , Bases de Datos Genéticas , Variación Genética , Humanos , Preparaciones Farmacéuticas/metabolismo , Polimorfismo Genético
11.
Genes Immun ; 20(3): 181-197, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29599514

RESUMEN

Human IL12RB1 is an autosomal gene that is essential for mycobacterial disease resistance and T cell differentiation. Using primary human tissue and PBMCs, we demonstrate that lung and T cell IL12RB1 expression is allele-biased, and the extent to which cells express one IL12RB1 allele is unaffected by activation. Furthermore following its expression the IL12RB1 pre-mRNA is processed into either IL12RB1 Isoform 1 (IL12Rß1, a positive regulator of IL12 responsiveness) or IL12RB1 Isoform 2 (a protein of heretofore unknown function). T cells choice to process pre-mRNA into Isoform 1 or Isoform 2 is controlled by intragenic competition of IL12RB1 exon 9-10 splicing with IL12RB1 exon 9b splicing, as well as an IL12RB1 exon 9b-associated polyadenylation site. Heterogeneous nuclear ribonucleoprotein H (hnRNP H) binds near the regulated polyadenylation site, but is not required for exon 9b polyadenylation. Finally, microRNA-mediated knockdown experiments demonstrated that IL12RB1 Isoform 2 promotes T cell IL12 responses. Collectively, our data support a model wherein tissue expression of human IL12RB1 is allele-biased and produces an hnRNP H-bound pre-mRNA, the processing of which generates a novel IL12 response regulator.


Asunto(s)
Alelos , Interleucina-12/genética , Empalme del ARN , Receptores de Interleucina-12/genética , Células Cultivadas , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/metabolismo , Humanos , Interleucina-12/metabolismo , Células Jurkat , Pulmón/metabolismo , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Interleucina-12/metabolismo , Linfocitos T/metabolismo
13.
Proc Natl Acad Sci U S A ; 112(50): 15414-9, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26621740

RESUMEN

Human interleukin 12 and interleukin 23 (IL12/23) influence susceptibility or resistance to multiple diseases. However, the reasons underlying individual differences in IL12/23 sensitivity remain poorly understood. Here we report that in human peripheral blood mononuclear cells (PBMCs) and inflamed lungs, the majority of interleukin-12 receptor ß1 (IL12RB1) mRNAs contain a number of RNA-DNA differences (RDDs) that concentrate in sequences essential to IL12Rß1's binding of IL12p40, the protein subunit common to both IL-12 and IL-23. IL12RB1 RDDs comprise multiple RDD types and are detectable by next-generation sequencing and classic Sanger sequencing. As a consequence of these RDDs, the resulting IL12Rß1 proteins have an altered amino acid sequence that could not be predicted on the basis of genomic DNA sequencing alone. Importantly, the introduction of RDDs into IL12RB1 mRNAs negatively regulates IL12Rß1's binding of IL12p40 and is sensitive to activation. Collectively, these results suggest that the introduction of RDDs into an individual's IL12RB1 mRNA repertoire is a novel determinant of IL12/23 sensitivity.


Asunto(s)
ADN/metabolismo , ARN/metabolismo , Receptores de Interleucina-12/metabolismo , Adulto , Secuencia de Bases , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Interleucina-12/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Modelos Biológicos , Datos de Secuencia Molecular , Fitohemaglutininas/farmacología , Neumonía/genética , Neumonía/patología , Unión Proteica/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Interleucina-12/genética , Proteínas Recombinantes/biosíntesis
14.
J Clin Invest ; 122(9): 3330-42, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22922256

RESUMEN

Dystroglycan is a transmembrane glycoprotein that links the extracellular basement membrane to cytoplasmic dystrophin. Disruption of the extensive carbohydrate structure normally present on α-dystroglycan causes an array of congenital and limb girdle muscular dystrophies known as dystroglycanopathies. The essential role of dystroglycan in development has hampered elucidation of the mechanisms underlying dystroglycanopathies. Here, we developed a dystroglycanopathy mouse model using inducible or muscle-specific promoters to conditionally disrupt fukutin (Fktn), a gene required for dystroglycan processing. In conditional Fktn-KO mice, we observed a near absence of functionally glycosylated dystroglycan within 18 days of gene deletion. Twenty-week-old KO mice showed clear dystrophic histopathology and a defect in glycosylation near the dystroglycan O-mannose phosphate, whether onset of Fktn excision driven by muscle-specific promoters occurred at E8 or E17. However, the earlier gene deletion resulted in more severe phenotypes, with a faster onset of damage and weakness, reduced weight and viability, and regenerating fibers of smaller size. The dependence of phenotype severity on the developmental timing of muscle Fktn deletion supports a role for dystroglycan in muscle development or differentiation. Moreover, given that this conditional Fktn-KO mouse allows the generation of tissue- and timing-specific defects in dystroglycan glycosylation, avoids embryonic lethality, and produces a phenotype resembling patient pathology, it is a promising new model for the study of secondary dystroglycanopathy.


Asunto(s)
Modelos Animales de Enfermedad , Distroglicanos/metabolismo , Distrofias Musculares/genética , Proteínas/genética , Animales , Femenino , Eliminación de Gen , Glicosilación , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Distrofias Musculares/metabolismo , Fenotipo , Procesamiento Proteico-Postraduccional , Subunidades de Proteína/metabolismo , Transferasas
15.
PLoS Med ; 6(5): e1000083, 2009 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-19478831

RESUMEN

BACKGROUND: The loss of dystrophin compromises muscle cell membrane stability and causes Duchenne muscular dystrophy and/or various forms of cardiomyopathy. Increased expression of the dystrophin homolog utrophin by gene delivery or pharmacologic up-regulation has been demonstrated to restore membrane integrity and improve the phenotype in the dystrophin-deficient mdx mouse. However, the lack of a viable therapy in humans predicates the need to explore alternative methods to combat dystrophin deficiency. We investigated whether systemic administration of recombinant full-length utrophin (Utr) or DeltaR4-21 "micro" utrophin (muUtr) protein modified with the cell-penetrating TAT protein transduction domain could attenuate the phenotype of mdx mice. METHODS AND FINDINGS: Recombinant TAT-Utr and TAT-muUtr proteins were expressed using the baculovirus system and purified using FLAG-affinity chromatography. Age-matched mdx mice received six twice-weekly intraperitoneal injections of either recombinant protein or PBS. Three days after the final injection, mice were analyzed for several phenotypic parameters of dystrophin deficiency. Injected TAT-muUtr transduced all tissues examined, integrated with members of the dystrophin complex, reduced serum levels of creatine kinase (11,290+/-920 U versus 5,950+/-1,120 U; PBS versus TAT), the prevalence of muscle degeneration/regeneration (54%+/-5% versus 37%+/-4% of centrally nucleated fibers; PBS versus TAT), the susceptibility to eccentric contraction-induced force drop (72%+/-5% versus 40%+/-8% drop; PBS versus TAT), and increased specific force production (9.7+/-1.1 N/cm(2) versus 12.8+/-0.9 N/cm(2); PBS versus TAT). CONCLUSIONS: These results are, to our knowledge, the first to establish the efficacy and feasibility of TAT-utrophin-based constructs as a novel direct protein-replacement therapy for the treatment of skeletal and cardiac muscle diseases caused by loss of dystrophin.


Asunto(s)
Distrofina/deficiencia , Distrofia Muscular Animal/tratamiento farmacológico , Distrofia Muscular de Duchenne/tratamiento farmacológico , Proteínas Recombinantes de Fusión/uso terapéutico , Utrofina/uso terapéutico , Animales , Creatina Quinasa/sangre , Distrofina/genética , Productos del Gen tat/genética , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/patología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Utrofina/genética , Utrofina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...