Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Space Sci Rev ; 219(5): 37, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448777

RESUMEN

We review comprehensive observations of electromagnetic ion cyclotron (EMIC) wave-driven energetic electron precipitation using data collected by the energetic electron detector on the Electron Losses and Fields InvestigatioN (ELFIN) mission, two polar-orbiting low-altitude spinning CubeSats, measuring 50-5000 keV electrons with good pitch-angle and energy resolution. EMIC wave-driven precipitation exhibits a distinct signature in energy-spectrograms of the precipitating-to-trapped flux ratio: peaks at >0.5 MeV which are abrupt (bursty) (lasting ∼17 s, or ΔL∼0.56) with significant substructure (occasionally down to sub-second timescale). We attribute the bursty nature of the precipitation to the spatial extent and structuredness of the wave field at the equator. Multiple ELFIN passes over the same MLT sector allow us to study the spatial and temporal evolution of the EMIC wave - electron interaction region. Case studies employing conjugate ground-based or equatorial observations of the EMIC waves reveal that the energy of moderate and strong precipitation at ELFIN approximately agrees with theoretical expectations for cyclotron resonant interactions in a cold plasma. Using multiple years of ELFIN data uniformly distributed in local time, we assemble a statistical database of ∼50 events of strong EMIC wave-driven precipitation. Most reside at L∼5-7 at dusk, while a smaller subset exists at L∼8-12 at post-midnight. The energies of the peak-precipitation ratio and of the half-peak precipitation ratio (our proxy for the minimum resonance energy) exhibit an L-shell dependence in good agreement with theoretical estimates based on prior statistical observations of EMIC wave power spectra. The precipitation ratio's spectral shape for the most intense events has an exponential falloff away from the peak (i.e., on either side of ∼1.45 MeV). It too agrees well with quasi-linear diffusion theory based on prior statistics of wave spectra. It should be noted though that this diffusive treatment likely includes effects from nonlinear resonant interactions (especially at high energies) and nonresonant effects from sharp wave packet edges (at low energies). Sub-MeV electron precipitation observed concurrently with strong EMIC wave-driven >1 MeV precipitation has a spectral shape that is consistent with efficient pitch-angle scattering down to ∼ 200-300 keV by much less intense higher frequency EMIC waves at dusk (where such waves are most frequent). At ∼100 keV, whistler-mode chorus may be implicated in concurrent precipitation. These results confirm the critical role of EMIC waves in driving relativistic electron losses. Nonlinear effects may abound and require further investigation.

2.
Space Sci Rev ; 218(4): 27, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35574274

RESUMEN

Large-scale disturbances generated by the Sun's dynamics first propagate through the heliosphere, influence the heliosphere's outer boundaries, and then traverse and modify the very local interstellar medium (VLISM). The existence of shocks in the VLISM was initially suggested by Voyager observations of the 2-3 kHz radio emissions in the heliosphere. A couple of decades later, both Voyagers crossed the definitive edge of our heliosphere and became the first ever spacecraft to sample interstellar space. Since Voyager 1's entrance into the VLISM, it sampled electron plasma oscillation events that indirectly measure the medium's density, increasing as it moves further away from the heliopause. Some of the observed electron oscillation events in the VLISM were associated with the local heliospheric shock waves. The observed VLISM shocks were very different than heliospheric shocks. They were very weak and broad, and the usual dissipation via wave-particle interactions could not explain their structure. Estimates of the dissipation associated with the collisionality show that collisions can determine the VLISM shock structure. According to theory and models, the existence of a bow shock or wave in front of our heliosphere is still an open question as there are no direct observations yet. This paper reviews the outstanding observations recently made by the Voyager 1 and 2 spacecraft, and our current understanding of the properties of shocks/waves in the VLISM. We present some of the most exciting open questions related to the VLISM and shock waves that should be addressed in the future.

3.
Space Sci Rev ; 217(8): 80, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34744192

RESUMEN

Measurements from NASA's Van Allen Probes have transformed our understanding of the dynamics of Earth's geomagnetically-trapped, charged particle radiation. The Van Allen Probes were equipped with the Magnetic Electron Ion Spectrometers (MagEIS) that measured energetic and relativistic electrons, along with energetic ions, in the radiation belts. Accurate and routine measurement of these particles was of fundamental importance towards achieving the scientific goals of the mission. We provide a comprehensive review of the MagEIS suite's on-orbit performance, operation, and data products, along with a summary of scientific results. The purpose of this review is to serve as a complement to the MagEIS instrument paper, which was largely completed before flight and thus focused on pre-flight design and performance characteristics. As is the case with all space-borne instrumentation, the anticipated sensor performance was found to be different once on orbit. Our intention is to provide sufficient detail on the MagEIS instruments so that future generations of researchers can understand the subtleties of the sensors, profit from these unique measurements, and continue to unlock the mysteries of the near-Earth space radiation environment. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11214-021-00855-2.

4.
J Geophys Res Space Phys ; 126(4): e2020JA028922, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33868890

RESUMEN

Electromagnetic ion cyclotron (EMIC) waves play important roles in particle loss processes in the magnetosphere. Determining the evolution of EMIC waves as they propagate and how this evolution affects wave-particle interactions requires accurate knowledge of the wave vector, k. We present a technique using the curl of the wave magnetic field to determine k observationally, enabled by the unique configuration and instrumentation of the Magnetospheric MultiScale (MMS) spacecraft. The wave curl analysis is demonstrated for synthetic arbitrary electromagnetic waves with varying properties typical of observed EMIC waves. The method is also applied to an EMIC wave interval observed by MMS on October 28, 2015. The derived wave properties and k from the wave curl analysis for the observed EMIC wave are compared with the Waves in Homogenous, Anisotropic, Multi-component Plasma (WHAMP) wave dispersion solution and with results from other single- and multi-spacecraft techniques. We find good agreement between k from the wave curl analysis, k determined from other observational techniques, and k determined from WHAMP. Additionally, the variation of k due to the time and frequency intervals used in the wave curl analysis is explored. This exploration demonstrates that the method is robust when applied to a wave containing at least 3-4 wave periods and over a rather wide frequency range encompassing the peak wave emission. These results provide confidence that we are able to directly determine the wave vector properties using this multi-spacecraft method implementation, enabling systematic studies of EMIC wave k properties with MMS.

5.
J Geophys Res Space Phys ; 125(10): e2020JA028144, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33133997

RESUMEN

Understanding the energization processes and constituent composition of the plasma and energetic particles injected into the near-Earth region from the tail is an important component of understanding magnetospheric dynamics. In this study, we present multiple case studies of the high-energy (≳40 keV) suprathermal ion populations during energetic particle enhancement events observed by the Energetic Ion Spectrometer (EIS) on NASA's Magnetospheric Multiscale (MMS) mission in the magnetotail. We present results from correlation analysis of the flux response between different energy channels of different ion species (hydrogen, helium, and oxygen) for multiple cases. We demonstrate that this technique can be used to infer the dominant charge state of the heavy ions, despite the fact that charge is not directly measured by EIS. Using this technique, we find that the energization and dispersion of suprathermal ions during energetic particle enhancements concurrent with (or near) fast plasma flows are ordered by energy per charge state (E/q) throughout the magnetotail regions examined (~7 to 25 Earth radii). The ions with the highest energies (≳300 keV) are helium and oxygen of solar wind origin, which obtain their greater energization due to their higher charge states. Additionally, the case studies show that during these injections the flux ratio of enhancement is also well ordered by E/q. These results expand on previous results which showed that high-energy total ion measurements in the magnetosphere are dominated by high-charge-state heavy ions and that protons are often not the dominant species above ~300 keV.

6.
Space Sci Rev ; 216(5): 103, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32831412

RESUMEN

The Electron Loss and Fields Investigation with a Spatio-Temporal Ambiguity-Resolving option (ELFIN-STAR, or heretoforth simply: ELFIN) mission comprises two identical 3-Unit (3U) CubeSats on a polar (∼93∘ inclination), nearly circular, low-Earth (∼450 km altitude) orbit. Launched on September 15, 2018, ELFIN is expected to have a >2.5 year lifetime. Its primary science objective is to resolve the mechanism of storm-time relativistic electron precipitation, for which electromagnetic ion cyclotron (EMIC) waves are a prime candidate. From its ionospheric vantage point, ELFIN uses its unique pitch-angle-resolving capability to determine whether measured relativistic electron pitch-angle and energy spectra within the loss cone bear the characteristic signatures of scattering by EMIC waves or whether such scattering may be due to other processes. Pairing identical ELFIN satellites with slowly-variable along-track separation allows disambiguation of spatial and temporal evolution of the precipitation over minutes-to-tens-of-minutes timescales, faster than the orbit period of a single low-altitude satellite (Torbit ∼ 90 min). Each satellite carries an energetic particle detector for electrons (EPDE) that measures 50 keV to 5 MeV electrons with Δ E/E < 40% and a fluxgate magnetometer (FGM) on a ∼72 cm boom that measures magnetic field waves (e.g., EMIC waves) in the range from DC to 5 Hz Nyquist (nominally) with <0.3 nT/sqrt(Hz) noise at 1 Hz. The spinning satellites (Tspin ∼ 3 s) are equipped with magnetorquers (air coils) that permit spin-up or -down and reorientation maneuvers. Using those, the spin axis is placed normal to the orbit plane (nominally), allowing full pitch-angle resolution twice per spin. An energetic particle detector for ions (EPDI) measures 250 keV - 5 MeV ions, addressing secondary science. Funded initially by CalSpace and the University Nanosat Program, ELFIN was selected for flight with joint support from NSF and NASA between 2014 and 2018 and launched by the ELaNa XVIII program on a Delta II rocket (with IceSatII as the primary). Mission operations are currently funded by NASA. Working under experienced UCLA mentors, with advice from The Aerospace Corporation and NASA personnel, more than 250 undergraduates have matured the ELFIN implementation strategy; developed the instruments, satellite, and ground systems and operate the two satellites. ELFIN's already high potential for cutting-edge science return is compounded by concurrent equatorial Heliophysics missions (THEMIS, Arase, Van Allen Probes, MMS) and ground stations. ELFIN's integrated data analysis approach, rapid dissemination strategies via the SPace Environment Data Analysis System (SPEDAS), and data coordination with the Heliophysics/Geospace System Observatory (H/GSO) optimize science yield, enabling the widest community benefits. Several storm-time events have already been captured and are presented herein to demonstrate ELFIN's data analysis methods and potential. These form the basis of on-going studies to resolve the primary mission science objective. Broad energy precipitation events, precipitation bands, and microbursts, clearly seen both at dawn and dusk, extend from tens of keV to >1 MeV. This broad energy range of precipitation indicates that multiple waves are providing scattering concurrently. Many observed events show significant backscattered fluxes, which in the past were hard to resolve by equatorial spacecraft or non-pitch-angle-resolving ionospheric missions. These observations suggest that the ionosphere plays a significant role in modifying magnetospheric electron fluxes and wave-particle interactions. Routine data captures starting in February 2020 and lasting for at least another year, approximately the remainder of the mission lifetime, are expected to provide a very rich dataset to address questions even beyond the primary mission science objective.

7.
J Geophys Res Space Phys ; 125(3): e2019JA027651, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32714732

RESUMEN

Microbursts are an impulsive increase of electrons from the radiation belts into the atmosphere and have been directly observed in low Earth orbit and the upper atmosphere. Prior work has estimated that microbursts are capable of rapidly depleting the radiation belt electrons on the order of a day; hence, their role to radiation belt electron losses must be considered. Losses due to microbursts are not well constrained, and more work is necessary to accurately quantify their contribution as a loss process. To address this question, we present a statistical study of > 35 keV microburst sizes using the pair of AeroCube-6 CubeSats. The microburst size distribution in low Earth orbit and the magnetic equator was derived using both spacecraft. In low Earth orbit, the majority of microbursts were observed, while the AeroCube-6 separation was less than a few tens of kilometers, mostly in latitude. To account for the statistical effects of random microburst locations and sizes, Monte Carlo and analytic models were developed to test hypothesized microburst size distributions. A family of microburst size distributions were tested, and a Markov chain Monte Carlo sampler was used to estimate the optimal distribution of model parameters. Finally, a majority of observed microbursts map to sizes less than 200 km at the magnetic equator. Since microbursts are widely believed to be generated by scattering of radiation belt electrons by whistler mode waves, the observed microburst size distribution was compared to whistler mode chorus size distributions derived in prior literature.

8.
Phys Rev Lett ; 124(6): 065101, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32109113

RESUMEN

The first-order Fermi acceleration of electrons requires an injection of electrons into a mildly relativistic energy range. However, the mechanism of injection has remained a puzzle both in theory and observation. We present direct evidence for a novel stochastic shock drift acceleration theory for the injection obtained with Magnetospheric Multiscale observations at the Earth's bow shock. The theoretical model can explain electron acceleration to mildly relativistic energies at high-speed astrophysical shocks, which may provide a solution to the long-standing issue of electron injection.

9.
J Geophys Res Space Phys ; 125(12): e2020JA028462, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33520562

RESUMEN

Curtain precipitation is a recently discovered stationary, persistent, and latitudinally narrow electron precipitation phenomenon in low Earth orbit. Curtains are observed over consecutive passes of the dual AeroCube-6 CubeSats while their in-track lag varied from a fraction of a second to 65 s, with dosimeters that are sensitive to >35-keV electrons. This study uses the AeroCube-6 mission to quantify the statistical properties of 1,634 curtains observed over 3 years. We found that many curtains are narrower than 10 km in the latitudinal direction with 90% narrower than 20 km. We examined the geographic, magnetic local time, and geomagnetic dependence of curtains. We found that curtains are observed in the late-morning and premidnight magnetic local times, with a higher occurrence rate at premidnight, and curtains are observed more often during times of enhanced Auroral Electrojet. We found a few curtains in the bounce loss cone region above the North Atlantic, whose electrons were continuously scattered for at least 6 s. Such observations suggest that continuous curtain precipitation may be a significant loss of >35-keV electrons from the magnetosphere into the atmosphere. We hypothesize that the curtains observed in the bounce loss cone were accelerated by parallel electric fields, and we show that this mechanism is consistent with the observations.

10.
J Geophys Res Space Phys ; 124(2): 934-951, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31008007

RESUMEN

We describe a new, more accurate procedure for estimating and removing inner zone background contamination from Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) radiation belt measurements. This new procedure is based on the underlying assumption that the primary source of background contamination in the electron measurements at L shells less than three, energetic inner belt protons, is relatively stable. Since a magnetic spectrometer can readily distinguish between foreground electrons and background signals, we are able to exploit the proton stability to construct a model of the background contamination in each MagEIS detector by only considering times when the measurements are known to be background dominated. We demonstrate, for relativistic electron measurements in the inner zone, that the new technique is a significant improvement upon the routine background corrections that are used in the standard MagEIS data processing, which can "overcorrect" and therefore remove real (but small) electron fluxes. As an example, we show that the previously reported 1-MeV injection into the inner zone that occurred in June of 2015 was distributed more broadly in L and persisted in the inner zone longer than suggested by previous estimates. Such differences can have important implications for both scientific studies and spacecraft engineering applications that make use of MagEIS electron data in the inner zone at relativistic energies. We compare these new results with prior work and present more recent observations that also show a 1-MeV electron injection into the inner zone following the September 2017 interplanetary shock passage.

11.
Science ; 362(6421): 1391-1395, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30442767

RESUMEN

Magnetic reconnection is an energy conversion process that occurs in many astrophysical contexts including Earth's magnetosphere, where the process can be investigated in situ by spacecraft. On 11 July 2017, the four Magnetospheric Multiscale spacecraft encountered a reconnection site in Earth's magnetotail, where reconnection involves symmetric inflow conditions. The electron-scale plasma measurements revealed (i) super-Alfvénic electron jets reaching 15,000 kilometers per second; (ii) electron meandering motion and acceleration by the electric field, producing multiple crescent-shaped structures in the velocity distributions; and (iii) the spatial dimensions of the electron diffusion region with an aspect ratio of 0.1 to 0.2, consistent with fast reconnection. The well-structured multiple layers of electron populations indicate that the dominant electron dynamics are mostly laminar, despite the presence of turbulence near the reconnection site.

12.
Nature ; 561(7722): 206-210, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30209369

RESUMEN

Earth and its magnetosphere are immersed in the supersonic flow of the solar-wind plasma that fills interplanetary space. As the solar wind slows and deflects to flow around Earth, or any other obstacle, a 'bow shock' forms within the flow. Under almost all solar-wind conditions, planetary bow shocks such as Earth's are collisionless, supercritical shocks, meaning that they reflect and accelerate a fraction of the incident solar-wind ions as an energy dissipation mechanism1,2, which results in the formation of a region called the ion foreshock3. In the foreshock, large-scale, transient phenomena can develop, such as 'hot flow anomalies'4-9, which are concentrations of shock-reflected, suprathermal ions that are channelled and accumulated along certain structures in the upstream magnetic field. Hot flow anomalies evolve explosively, often resulting in the formation of new shocks along their upstream edges5,10, and potentially contribute to particle acceleration11-13, but there have hitherto been no observations to constrain this acceleration or to confirm the underlying mechanism. Here we report observations of a hot flow anomaly accelerating solar-wind ions from roughly 1-10 kiloelectronvolts up to almost 1,000 kiloelectronvolts. The acceleration mechanism depends on the mass and charge state of the ions and is consistent with first-order Fermi acceleration14,15. The acceleration that we observe results from only the interaction of Earth's bow shock with the solar wind, but produces a much, much larger number of energetic particles compared to what would typically be produced in the foreshock from acceleration at the bow shock. Such autogenous and efficient acceleration at quasi-parallel bow shocks (the normal direction of which are within about 45 degrees of the interplanetary magnetic field direction) provides a potential solution to Fermi's 'injection problem', which requires an as-yet-unexplained seed population of energetic particles, and implies that foreshock transients may be important in the generation of cosmic rays at astrophysical shocks throughout the cosmos.

13.
Phys Rev Lett ; 117(21): 215101, 2016 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-27911552

RESUMEN

Charged particles can be reflected and accelerated by strong (i.e., high Mach number) astrophysical collisionless shock waves, streaming away to form a foreshock region in communication with the shock. Foreshocks are primarily populated by suprathermal ions that can generate foreshock disturbances-large-scale (i.e., tens to thousands of thermal ion Larmor radii), transient (∼5-10 per day) structures. They have recently been found to accelerate ions to energies of several keV. Although electrons in Saturn's high Mach number (M>40) bow shock can be accelerated to relativistic energies (nearly 1000 keV), it has hitherto been thought impossible to accelerate electrons beyond a few tens of keV at Earth's low Mach number (1≤M<20) bow shock. Here we report observations of electrons energized by foreshock disturbances to energies up to at least ∼300 keV. Although such energetic electrons have been previously observed, their presence has been attributed to escaping magnetospheric particles or solar events. These relativistic electrons are not associated with any solar or magnetospheric activity. Further, due to their relatively small Larmor radii (compared to magnetic gradient scale lengths) and large thermal speeds (compared to shock speeds), no known shock acceleration mechanism can energize thermal electrons up to relativistic energies. The discovery of relativistic electrons associated with foreshock structures commonly generated in astrophysical shocks could provide a new paradigm for electron injections and acceleration in collisionless plasmas.

14.
Science ; 352(6290): aaf2939, 2016 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-27174677

RESUMEN

Magnetic reconnection is a fundamental physical process in plasmas whereby stored magnetic energy is converted into heat and kinetic energy of charged particles. Reconnection occurs in many astrophysical plasma environments and in laboratory plasmas. Using measurements with very high time resolution, NASA's Magnetospheric Multiscale (MMS) mission has found direct evidence for electron demagnetization and acceleration at sites along the sunward boundary of Earth's magnetosphere where the interplanetary magnetic field reconnects with the terrestrial magnetic field. We have (i) observed the conversion of magnetic energy to particle energy; (ii) measured the electric field and current, which together cause the dissipation of magnetic energy; and (iii) identified the electron population that carries the current as a result of demagnetization and acceleration within the reconnection diffusion/dissipation region.

15.
Mucosal Immunol ; 7(3): 501-10, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24064670

RESUMEN

The extent to which tissue-specific viral infections generate memory T cells specifically adapted to and maintained within the target infection site is unknown. Here, we show that respiratory virus-specific memory T cells in mice and humans are generated and maintained in compartmentalized niches in lungs, distinct from populations in lymphoid tissue or circulation. Using a polyclonal mouse model of influenza infection combined with an in vivo antibody labeling approach and confocal imaging, we identify a spatially distinct niche in the lung where influenza-specific T-cell responses are expanded and maintained long term as tissue-resident memory (T(RM)) CD4 and CD8 T cells. Lung T(RM) are further distinguished from circulating memory subsets in lung and spleen based on CD69 expression and persistence independent of lymphoid stores. In humans, influenza-specific T cells are enriched within the lung T(RM) subset, whereas memory CD8 T cells specific for the systemic virus cytomegalovirus are distributed in both lung and spleen, suggesting that the site of infection affects T(RM) generation. Our findings reveal a precise spatial organization to virus-specific T-cell memory, determined by the site of the initial infection, with important implications for the development of targeted strategies to boost immunity at appropriate tissue sites.


Asunto(s)
Memoria Inmunológica , Pulmón/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Modelos Animales de Enfermedad , Humanos , Inmunofenotipificación , Virus de la Influenza A/inmunología , Pulmón/metabolismo , Pulmón/virología , Activación de Linfocitos/inmunología , Tejido Linfoide/inmunología , Tejido Linfoide/metabolismo , Ratones , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/metabolismo , Fenotipo , Especificidad del Receptor de Antígeno de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
16.
Science ; 341(6153): 1478-82, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-24072917

RESUMEN

Earth's magnetotail contains magnetic energy derived from the kinetic energy of the solar wind. Conversion of that energy back to particle energy ultimately powers Earth's auroras, heats the magnetospheric plasma, and energizes the Van Allen radiation belts. Where and how such electromagnetic energy conversion occurs has been unclear. Using a conjunction between eight spacecraft, we show that this conversion takes place within fronts of recently reconnected magnetic flux, predominantly at 1- to 10-electron inertial length scale, intense electrical current sheets (tens to hundreds of nanoamperes per square meter). Launched continually during intervals of geomagnetic activity, these reconnection outflow flux fronts convert ~10 to 100 gigawatts per square Earth radius of power, consistent with local magnetic flux transport, and a few times 10(15) joules of magnetic energy, consistent with global magnetotail flux reduction.

17.
Science ; 341(6149): 991-4, 2013 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-23887876

RESUMEN

The Van Allen radiation belts contain ultrarelativistic electrons trapped in Earth's magnetic field. Since their discovery in 1958, a fundamental unanswered question has been how electrons can be accelerated to such high energies. Two classes of processes have been proposed: transport and acceleration of electrons from a source population located outside the radiation belts (radial acceleration) or acceleration of lower-energy electrons to relativistic energies in situ in the heart of the radiation belts (local acceleration). We report measurements from NASA's Van Allen Radiation Belt Storm Probes that clearly distinguish between the two types of acceleration. The observed radial profiles of phase space density are characteristic of local acceleration in the heart of the radiation belts and are inconsistent with a predominantly radial acceleration process.

18.
Br J Pharmacol ; 167(3): 515-26, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22563753

RESUMEN

BACKGROUND AND PURPOSE: Inhaled corticosteroids, anticholinergics and ß2-adrenoceptor agonists are frequently combined for treating chronic respiratory diseases. We examine the corticosteroid, budesonide, and novel NO-donating derivative, TPI 1020, against histamine- and methacholine-induced bronchoconstriction and whether they enhance the ß2-adrenoceptor agonist formoterol or muscarinic antagonist tiotropium in conscious guinea pigs. EXPERIMENTAL APPROACH: Dunkin-Hartley guinea pigs received inhaled histamine (3 mM) or methacholine (1.5 mM) and specific airway conductance (sG(aw)) was measured before and 15 or 75 min after treatment with budesonide, TPI 1020, tiotropium or formoterol alone or in combinations. KEY RESULTS: Formoterol (0.7-10 µM) and budesonide (0.11-0.7 mM) inhibited histamine-induced bronchoconstriction and tiotropium (2-20 µM) inhibited methacholine-induced bronchoconstriction by up to 70.8 ± 16.6%, 34.9 ± 4.4% and 85.1 ± 14.3%, respectively. Formoterol (2.5 µM) or tiotropium (2 µM) alone exerted small non-significant bronchoprotection. However, when co-administered with TPI 1020 0.11 mM, which alone had no significant effect, there was significant inhibition of the bronchoconstriction (45.7 ± 12.2% and 79.7 ± 21.4%, respectively). Co-administering budesonide (0.11 mM) with tiotropium (2 µM), which alone had no effect, also significantly inhibited the methacholine bronchoconstriction (36.5 ± 13.0%), but there was no potentiation of formoterol against histamine. The NO scavenger, CPTIO, prevented the bronchoprotection by SNAPand TPI 1020. CONCLUSIONS AND IMPLICATIONS: TPI 1020 potentiated the bronchoprotection by formoterol and tiotropium. Budesonide also enhanced the effects of tiotropium but not formoterol. Combination of TPI 1020 with a long-acting ß2-adrenoceptor agonist or muscarinic receptor antagonist may therefore be a more potent therapeutic approach for treatment of chronic respiratory diseases.


Asunto(s)
Broncodilatadores/farmacología , Budesonida/análogos & derivados , Etanolaminas/farmacología , Derivados de Escopolamina/farmacología , Administración por Inhalación , Animales , Broncoconstricción/efectos de los fármacos , Broncodilatadores/administración & dosificación , Budesonida/administración & dosificación , Budesonida/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Quimioterapia Combinada , Etanolaminas/administración & dosificación , Fumarato de Formoterol , Cobayas , Histamina/farmacología , Masculino , Cloruro de Metacolina/farmacología , Enfermedades Respiratorias/tratamiento farmacológico , Enfermedades Respiratorias/fisiopatología , Derivados de Escopolamina/administración & dosificación , Factores de Tiempo , Bromuro de Tiotropio
19.
Respir Physiol Neurobiol ; 161(3): 230-8, 2008 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-18396470

RESUMEN

Small increases in respiratory dead space (VD) augment the exercise ventilatory response by a serotonin-dependent mechanism known as short-term modulation (STM). We tested the hypotheses that the relevant serotonin receptors for STM are in the spinal cord, and are of the 5-HT2-receptor subtype. After preparing adult female goats with a mid-thoracic (T6-T8) subarachnoid catheter, ventilation and arterial blood gases were measured at rest and during treadmill exercise (4.8 km/h; 5% grade) with and without an increased VD (0.2-0.3 L). Measurements were made before and after spinal or intravenous administration of a broad-spectrum serotonin receptor antagonist (methysergide, 1-2mg total) and a selective 5-HT2-receptor antagonist (ketanserin, 5-12 mg total). Although spinal methysergide had no effect on the exercise ventilatory response in control conditions, the augmented response with increased VD was impaired, allowing Pa(CO)(2) to increase from rest to exercise. Spinal methysergide diminished both mean inspiratory flow and frequency responses to exercise with increased VD. Spinal ketanserin impaired Pa(CO)(2) regulation with increased VD, although its ventilatory effects were less clear. Intrathecal dye injections indicated CSF drug distribution was caudal to the upper cervical spinal cord and intravenous drugs at the same total dose did not affect STM. We conclude that spinal 5-HT2 receptors modulate the exercise ventilatory response with increased VD in goats.


Asunto(s)
Condicionamiento Físico Animal , Ventilación Pulmonar/fisiología , Receptores de Serotonina/metabolismo , Espacio Muerto Respiratorio/fisiología , Médula Espinal/metabolismo , Animales , Análisis de los Gases de la Sangre/métodos , Dióxido de Carbono/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Cabras , Ketanserina/farmacología , Metisergida/farmacología , Ventilación Pulmonar/efectos de los fármacos , Respiración Artificial/métodos , Espacio Muerto Respiratorio/efectos de los fármacos , Antagonistas de la Serotonina/farmacología , Médula Espinal/efectos de los fármacos , Volumen de Ventilación Pulmonar/efectos de los fármacos , Volumen de Ventilación Pulmonar/fisiología
20.
Eur J Appl Physiol ; 91(2-3): 192-8, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14677069

RESUMEN

During constant-load exercise above the lactate threshold, oxygen-uptake kinetics deviate from the pattern seen below the threshold, with an additional, delayed component superimposed on the monoexponential pattern. It was hypothesised that this slow component is due to the progressive recruitment of type II muscle fibres. Oxygen uptake was measured for six male power athletes (group P) and six male endurance athletes (group E) during constant-load knee extension exercise tests in order to determine slow component amplitude. In addition, an electrical stimulation protocol was employed in order to assess the functional contractile profile and fatiguability of the knee extensors. The amplitude of the slow component during exercise was significantly ( P<0.05) greater in group P than in group E when expressed as an absolute value [mean (SEM)=77 (17) ml min(-1) and 24 (16) ml min(-1)] and when normalised to end-exercise oxygen uptake, VO(2) [8.2 (0.5)% and 2.6 (1.8)%]. Group differences were observed for percentage force loss during the electrical stimulation protocol [50.0 (3.4)% and 31.5 (3.7)% for groups P and E, respectively], increase in relaxation time from start to end of the fatigue test [87.9 (15.5)% and 31.1 (11.9)%], and relaxation time for fresh muscle [32.4 (1.0) ms and 40.6 (2.1) ms]. These contractile parameters may indicate a higher proportion of type II fibres in group P compared with group E. These experiments have shown evidence of a relationship between the amplitude of the slow component and muscle contractile properties, indicating that the origin of the slow component may lie in the pattern of different muscle fibre types.


Asunto(s)
Ejercicio Físico/fisiología , Articulación de la Rodilla/fisiología , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/fisiología , Consumo de Oxígeno/fisiología , Deportes/fisiología , Adulto , Humanos , Masculino , Oxígeno/metabolismo , Intercambio Gaseoso Pulmonar/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...