Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
medRxiv ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38766048

RESUMEN

Stabilized trimers preserving the native-like HIV envelope structure may be key components of a preventive HIV vaccine regimen to induce broadly neutralizing antibodies (bnAbs). We evaluated trimeric BG505 SOSIP.664 gp140, formulated with a novel TLR7/8 signaling adjuvant, 3M-052-AF/Alum, for safety, adjuvant dose-finding and immunogenicity in a first-in-healthy adult (n=17), randomized, placebo-controlled trial (HVTN 137A). The vaccine regimen appeared safe. Robust, trimer-specific antibody, B-cell and CD4+ T-cell responses emerged post-vaccination. Five vaccinees developed serum autologous tier-2 nAbs (ID50 titer, 1:28-1:8647) after 2-3 doses targeting C3/V5 and/or V1/V2/V3 Env regions by electron microscopy and mutated pseudovirus-based neutralization analyses. Trimer-specific, B-cell-derived monoclonal antibody activities confirmed these results and showed weak heterologous neutralization in the strongest responder. Our findings demonstrate the clinical utility of the 3M-052-AF/alum adjuvant and support further improvements of trimer-based Env immunogens to focus responses on multiple broad nAb epitopes. KEY TAKEAWAY/TAKE-HOME MESSAGES: HIV BG505 SOSIP.664 trimer with novel 3M-052-AF/alum adjuvant in humans appears safe and induces serum neutralizing antibodies to matched clade A, tier 2 virus, that map to diverse Env epitopes with relatively high titers. The novel adjuvant may be an important mediator of vaccine response.

2.
STAR Protoc ; 4(3): 102476, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37516970

RESUMEN

Electron microscopy-based polyclonal epitope mapping (EMPEM) can delineate epitope specificities of serum antibodies to a given antigen following vaccination or infection. Here, we present a protocol for the EMPEM method for rapid high-throughput assessment of antibody responses to glycoprotein antigens in vaccination and infection studies. We describe steps for antibody isolation and digestion, antigen complex and purification, and electron microscope imaging. We then detail procedures for processing and analysis of EMPEM data. For complete details on the use and execution of this protocol, please refer to Bianchi et al. (2018).1.


Asunto(s)
Formación de Anticuerpos , Electrones , Mapeo Epitopo , Microscopía Electrónica , Anticuerpos , Glicoproteínas
3.
Immunity ; 56(8): 1927-1938.e8, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37506693

RESUMEN

Neuraminidase (NA) is one of the two influenza virus surface glycoproteins, and antibodies that target it are an independent correlate of protection. However, our current understanding of NA antigenicity is incomplete. Here, we describe human monoclonal antibodies (mAbs) from a patient with a pandemic H1N1 virus infection in 2009. Two mAbs exhibited broad reactivity and inhibited NA enzyme activity of seasonal H1N1 viruses circulating before and after 2009, as well as viruses with avian or swine N1s. The mAbs provided robust protection from lethal challenge with human H1N1 and avian H5N1 viruses in mice, and both target an epitope on the lateral face of NA. In summary, we identified two broadly protective NA antibodies that share a novel epitope, inhibited NA activity, and provide protection against virus challenge in mice. Our work reaffirms that NA should be included as a target in future broadly protective or universal influenza virus vaccines.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antivirales , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Neuraminidasa , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Monoclonales/metabolismo , Anticuerpos Antivirales/aislamiento & purificación , Anticuerpos Antivirales/metabolismo , Neuraminidasa/química , Neuraminidasa/metabolismo , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Microscopía por Crioelectrón , Epítopos , Ratones Endogámicos BALB C , Animales , Ratones , Gripe Humana/tratamiento farmacológico , Modelos Animales de Enfermedad
4.
Proc Natl Acad Sci U S A ; 120(24): e2216612120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37276407

RESUMEN

Nanobodies bind a target antigen with a kinetic profile similar to a conventional antibody, but exist as a single heavy chain domain that can be readily multimerized to engage antigen via multiple interactions. Presently, most nanobodies are produced by immunizing camelids; however, platforms for animal-free production are growing in popularity. Here, we describe the development of a fully synthetic nanobody library based on an engineered human VH3-23 variable gene and a multispecific antibody-like format designed for biparatopic target engagement. To validate our library, we selected nanobodies against the SARS-CoV-2 receptor-binding domain and employed an on-yeast epitope binning strategy to rapidly map the specificities of the selected nanobodies. We then generated antibody-like molecules by replacing the VH and VL domains of a conventional antibody with two different nanobodies, designed as a molecular clamp to engage the receptor-binding domain biparatopically. The resulting bispecific tetra-nanobody immunoglobulins neutralized diverse SARS-CoV-2 variants with potencies similar to antibodies isolated from convalescent donors. Subsequent biochemical analyses confirmed the accuracy of the on-yeast epitope binning and structures of both individual nanobodies, and a tetra-nanobody immunoglobulin revealed that the intended mode of interaction had been achieved. This overall workflow is applicable to nearly any protein target and provides a blueprint for a modular workflow for the development of multispecific molecules.


Asunto(s)
COVID-19 , Anticuerpos de Dominio Único , Humanos , Anticuerpos de Dominio Único/química , Saccharomyces cerevisiae/metabolismo , SARS-CoV-2 , Anticuerpos , Epítopos
5.
J Clin Invest ; 133(8)2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36862518

RESUMEN

The rapid evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants has emphasized the need to identify antibodies with broad neutralizing capabilities to inform future monoclonal therapies and vaccination strategies. Herein, we identified S728-1157, a broadly neutralizing antibody (bnAb) targeting the receptor-binding site (RBS) that was derived from an individual previously infected with WT SARS-CoV-2 prior to the spread of variants of concern (VOCs). S728-1157 demonstrated broad cross-neutralization of all dominant variants, including D614G, Beta, Delta, Kappa, Mu, and Omicron (BA.1/BA.2/BA.2.75/BA.4/BA.5/BL.1/XBB). Furthermore, S728-1157 protected hamsters against in vivo challenges with WT, Delta, and BA.1 viruses. Structural analysis showed that this antibody targets a class 1/RBS-A epitope in the receptor binding domain via multiple hydrophobic and polar interactions with its heavy chain complementarity determining region 3 (CDR-H3), in addition to common motifs in CDR-H1/CDR-H2 of class 1/RBS-A antibodies. Importantly, this epitope was more readily accessible in the open and prefusion state, or in the hexaproline (6P)-stabilized spike constructs, as compared with diproline (2P) constructs. Overall, S728-1157 demonstrates broad therapeutic potential and may inform target-driven vaccine designs against future SARS-CoV-2 variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Anticuerpos , Epítopos , Anticuerpos Antivirales , Anticuerpos Neutralizantes
6.
Nat Commun ; 13(1): 7864, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36543789

RESUMEN

Contemporary influenza A H3N2 viruses circulating since 2016 have acquired a glycosylation site in the neuraminidase in close proximity to the enzymatic active site. Here, we investigate if this S245N glycosylation site, as a result of antigenic evolution, can impact binding and function of human monoclonal antibodies that target the conserved active site. While we find that a reduction in the inhibitory ability of neuraminidase active site binders is measurable, this class of broadly reactive monoclonal antibodies maintains protective efficacy in vivo.


Asunto(s)
Anticuerpos Monoclonales , Subtipo H3N2 del Virus de la Influenza A , Neuraminidasa , Humanos , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/química , Anticuerpos Antivirales/metabolismo , Dominio Catalítico/inmunología , Dominio Catalítico/fisiología , Glicosilación , Glicoproteínas Hemaglutininas del Virus de la Influenza , Virus de la Influenza A , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Gripe Humana/inmunología , Gripe Humana/metabolismo , Neuraminidasa/química , Neuraminidasa/inmunología
7.
PLoS Pathog ; 18(11): e1010945, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36395347

RESUMEN

Broadly neutralizing antibodies (bNAbs) have remarkable breadth and potency against most HIV-1 subtypes and are able to prevent HIV-1 infection in animal models. However, bNAbs are extremely difficult to induce by vaccination. Defining the developmental pathways towards neutralization breadth can assist in the design of strategies to elicit protective bNAb responses by vaccination. Here, HIV-1 envelope glycoproteins (Env)-specific IgG+ B cells were isolated at various time points post infection from an HIV-1 infected elite neutralizer to obtain monoclonal antibodies (mAbs). Multiple antibody lineages were isolated targeting distinct epitopes on Env, including the gp120-gp41 interface, CD4-binding site, silent face and V3 region. The mAbs each neutralized a diverse set of HIV-1 strains from different clades indicating that the patient's remarkable serum breadth and potency might have been the result of a polyclonal mixture rather than a single bNAb lineage. High-resolution cryo-electron microscopy structures of the neutralizing mAbs (NAbs) in complex with an Env trimer generated from the same individual revealed that the NAbs used multiple strategies to neutralize the virus; blocking the receptor binding site, binding to HIV-1 Env N-linked glycans, and disassembly of the trimer. These results show that diverse NAbs can complement each other to achieve a broad and potent neutralizing serum response in HIV-1 infected individuals. Hence, the induction of combinations of moderately broad NAbs might be a viable vaccine strategy to protect against a wide range of circulating HIV-1 viruses.


Asunto(s)
Seropositividad para VIH , VIH-1 , Animales , Anticuerpos ampliamente neutralizantes , Microscopía por Crioelectrón , Anticuerpos Monoclonales , Proteína gp120 de Envoltorio del VIH
8.
iScience ; 25(9): 104914, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-35971553

RESUMEN

The rapid spread of SARS-CoV-2 variants poses a constant threat of escape from monoclonal antibody and vaccine countermeasures. Mutations in the ACE2 receptor binding site on the surface S protein have been shown to disrupt antibody binding and prevent viral neutralization. Here, we used a directed evolution-based approach to engineer three neutralizing antibodies for enhanced binding to S protein. The engineered antibodies showed increased in vitro functional activity in terms of neutralization potency and/or breadth of neutralization against viral variants. Deep mutational scanning revealed that higher binding affinity reduces the total number of viral escape mutations. Studies in the Syrian hamster model showed two examples where the affinity-matured antibody provided superior protection compared to the parental antibody. These data suggest that monoclonal antibodies for antiviral indications would benefit from affinity maturation to reduce viral escape pathways and appropriate affinity maturation in vaccine immunization could help resist viral variation.

9.
Nat Commun ; 13(1): 4515, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35922441

RESUMEN

A major goal of current HIV-1 vaccine design efforts is to induce broadly neutralizing antibodies (bNAbs). The VH1-2-derived bNAb IOMA directed to the CD4-binding site of the HIV-1 envelope glycoprotein is of interest because, unlike the better-known VH1-2-derived VRC01-class bNAbs, it does not require a rare short light chain complementarity-determining region 3 (CDRL3). Here, we describe three IOMA-class NAbs, ACS101-103, with up to 37% breadth, that share many characteristics with IOMA, including an average-length CDRL3. Cryo-electron microscopy revealed that ACS101 shares interactions with those observed with other VH1-2 and VH1-46-class bNAbs, but exhibits a unique binding mode to residues in loop D. Analysis of longitudinal sequences from the patient suggests that a transmitter/founder-virus lacking the N276 glycan might have initiated the development of these NAbs. Together these data strengthen the rationale for germline-targeting vaccination strategies to induce IOMA-class bNAbs and provide a wealth of sequence and structural information to support such strategies.


Asunto(s)
Infecciones por VIH , VIH-1 , Anticuerpos Neutralizantes , Antígenos Virales , Sitios de Unión , Anticuerpos ampliamente neutralizantes , Antígenos CD4/inmunología , Regiones Determinantes de Complementariedad , Microscopía por Crioelectrón , Glicoproteínas , Anticuerpos Anti-VIH , Humanos
10.
JCI Insight ; 6(19)2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34437301

RESUMEN

Avian H7N9 influenza viruses cause sporadic outbreaks of human infections and threaten to cause a major pandemic. The breadth of B cell responses to natural infection and the dominant antigenic sites recognized during first exposure to H7 HA following infection are incompletely understood. Here, we studied the B cell response to H7 HA of 2 individuals who had recovered from natural H7N9 virus infection. We used competition binding, hydrogen-deuterium mass spectrometry, and single-particle negative stain electron microscopy to identify the patterns of molecular recognition of the antibody responses to H7 HA. We found that circulating H7-reactive B cells recognized a diverse antigenic landscape on the HA molecule, including HA head domain epitopes in antigenic sites A and B and in the trimer interface-II region and epitopes in the stem region. Most H7 antibodies exhibited little heterosubtypic breadth, but many recognized a wide diversity of unrelated H7 strains. We tested the antibodies for functional activity and identified clones with diverse patterns of inhibition, including neutralizing, hemagglutination- or egress-inhibiting, or HA trimer-disrupting activities. Thus, the human B cell response to primary H7 natural infection is diverse, highly functional, and broad for recognition of diverse H7 strains.


Asunto(s)
Anticuerpos Antivirales/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H7N9 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Humanos
11.
Sci Adv ; 7(31)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34321200

RESUMEN

Rationally designed protein subunit vaccines are being developed for a variety of viruses including influenza, RSV, SARS-CoV-2, and HIV. These vaccines are based on stabilized versions of the primary targets of neutralizing antibodies on the viral surface, namely, viral fusion glycoproteins. While these immunogens display the epitopes of potent neutralizing antibodies, they also present epitopes recognized by non-neutralizing or weakly neutralizing ("off-target") antibodies. Using our recently developed electron microscopy polyclonal epitope mapping approach, we have uncovered a phenomenon wherein off-target antibodies elicited by HIV trimer subunit vaccines cause the otherwise highly stabilized trimeric proteins to degrade into cognate protomers. Further, we show that these protomers expose an expanded suite of off-target epitopes, normally occluded inside the prefusion conformation of trimer, that subsequently elicit further off-target antibody responses. Our study provides critical insights for further improvement of HIV subunit trimer vaccines for future rounds of the iterative vaccine design process.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Anti-VIH/química , Infecciones por VIH/inmunología , VIH-1/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Vacunas contra el SIDA/química , Animales , COVID-19/inmunología , Femenino , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Humanos , Macaca mulatta , Conejos , SARS-CoV-2/química , SARS-CoV-2/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología
12.
J Clin Invest ; 131(15)2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34156974

RESUMEN

Broadly reactive antibodies targeting the influenza A virus hemagglutinin (HA) head domain are thought to be rare and to require extensive somatic mutations or unusual structural features to achieve breadth against divergent HA subtypes. Here we describe common genetic and structural features of protective human antibodies from several individuals recognizing the trimer interface (TI) of the influenza A HA head, a recently identified site of vulnerability. We examined the sequence of TI-reactive antibodies, determined crystal structures for TI antibody-antigen complexes, and analyzed the contact residues of the antibodies on HA to discover common genetic and structural features of TI antibodies. Our data reveal that many TI antibodies are encoded by a light chain variable gene segment incorporating a shared somatic mutation. In addition, these antibodies have a shared acidic residue in the heavy chain despite originating from diverse heavy chain variable gene segments. These studies show that the TI region of influenza A HA is a major antigenic site with conserved structural features that are recognized by a common human B cell public clonotype. The canonical nature of this antibody-antigen interaction suggests that the TI epitope might serve as an important target for structure-based vaccine design.


Asunto(s)
Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Subtipo H1N1 del Virus de la Influenza A/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Epítopos/química , Epítopos/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/química , Vacunas contra la Influenza/inmunología
13.
bioRxiv ; 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33619491

RESUMEN

Rationally designed protein subunit vaccines are being developed for a variety of viruses including influenza, RSV, SARS-CoV-2 and HIV. These vaccines are based on stabilized versions of the primary targets of neutralizing antibodies on the viral surface, namely viral fusion glycoproteins. While these immunogens display the epitopes of potent neutralizing antibodies, they also present epitopes recognized by non or weakly neutralizing ("off-target") antibodies. Using our recently developed electron microscopy epitope mapping approach, we have uncovered a phenomenon wherein off-target antibodies elicited by HIV trimer subunit vaccines cause the otherwise highly stabilized trimeric proteins to degrade into cognate protomers. Further, we show that these protomers expose an expanded suite of off-target epitopes, normally occluded inside the prefusion conformation of trimer, that subsequently elicit further off-target antibody responses. Our study provides critical insights for further improvement of HIV subunit trimer vaccines for future rounds of the iterative vaccine design process.

14.
Cell ; 184(5): 1188-1200.e19, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33577765

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is continuing to disrupt personal lives, global healthcare systems, and economies. Hence, there is an urgent need for a vaccine that prevents viral infection, transmission, and disease. Here, we present a two-component protein-based nanoparticle vaccine that displays multiple copies of the SARS-CoV-2 spike protein. Immunization studies show that this vaccine induces potent neutralizing antibody responses in mice, rabbits, and cynomolgus macaques. The vaccine-induced immunity protects macaques against a high-dose challenge, resulting in strongly reduced viral infection and replication in the upper and lower airways. These nanoparticles are a promising vaccine candidate to curtail the SARS-CoV-2 pandemic.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/inmunología , Macaca fascicularis , Glicoproteína de la Espiga del Coronavirus/química , Animales , Anticuerpos Neutralizantes , Linfocitos B/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Ratones , Ratones Endogámicos BALB C , Modelos Animales , Nanopartículas/administración & dosificación , Conejos , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/sangre , Linfocitos T/inmunología , Carga Viral
15.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33593910

RESUMEN

In this study, we utilized a panel of human immunoglobulin (Ig) IgA monoclonal antibodies isolated from the plasmablasts of eight donors after 2014/2015 influenza virus vaccination (Fluarix) to study the binding and functional specificities of this isotype. In this cohort, isolated IgA monoclonal antibodies were primarily elicited against the hemagglutinin protein of the H1N1 component of the vaccine. To compare effector functionalities, an H1-specific subset of antibodies targeting distinct epitopes were expressed as monomeric, dimeric, or secretory IgA, as well as in an IgG1 backbone. When expressed with an IgG Fc domain, all antibodies elicited Fc-effector activity in a primary polymorphonuclear cell-based assay which differs from previous observations that found only stalk-specific antibodies activate the low-affinity FcγRIIIa. However, when expressed with IgA Fc domains, only antibodies targeting the stalk domain showed Fc-effector activity in line with these previous findings. To identify the cause of this discrepancy, we then confirmed that IgG signaling through the high-affinity FcγI receptor was not restricted to stalk epitopes. Since no corresponding high-affinity Fcα receptor exists, the IgA repertoire may therefore be limited to stalk-specific epitopes in the context of Fc receptor signaling.


Asunto(s)
Epítopos/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunoglobulina A/inmunología , Fragmentos Fc de Inmunoglobulinas/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Adulto , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Afinidad de Anticuerpos , Sitios de Unión de Anticuerpos , Embrión de Pollo , Microscopía por Crioelectrón , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Vacunas contra la Influenza/inmunología , Masculino , Neutrófilos/inmunología , Neutrófilos/virología
16.
J Virol ; 95(8)2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33536172

RESUMEN

The severe death toll caused by the recent outbreak of Ebola virus disease reinforces the importance of developing ebolavirus prevention and treatment strategies. Here, we have explored the immunogenicity of a novel immunization regimen priming with vesicular stomatitis virus particles bearing Sudan Ebola virus (SUDV) glycoprotein (GP) that consists of GP1 & GP2 subunits and boosting with soluble SUDV GP in macaques, which developed robust neutralizing antibody (nAb) responses following immunizations. Moreover, EB46, a protective nAb isolated from one of the immune macaques, is found to target the GP1/GP2 interface, with GP-binding mode and neutralization mechanism similar to a number of ebolavirus nAbs from human and mouse, indicating that the ebolavirus GP1/GP2 interface is a common immunological target in different species. Importantly, selected immune macaque polyclonal sera showed nAb specificity similar to EB46 at substantial titers, suggesting that the GP1/GP2 interface region is a viable target for ebolavirus vaccine.Importance: The elicitation of sustained neutralizing antibody (nAb) responses against diverse ebolavirus strains remains as a high priority for the vaccine field. The most clinically advanced rVSV-ZEBOV vaccine could elicit moderate nAb responses against only one ebolavirus strain, EBOV, among the five ebolavirus strains, which last less than 6 months. Boost immunization strategies are desirable to effectively recall the rVSV vector-primed nAb responses to prevent infections in prospective epidemics, while an in-depth understanding of the specificity of immunization-elicited nAb responses is essential for improving vaccine performance. Here, using non-human primate animal model, we demonstrated that booster immunization with a stabilized trimeric soluble form of recombinant glycoprotein derived from the ebolavirus Sudan strain following the priming rVSV vector immunization led to robust nAb responses that substantially map to the subunit interface of ebolavirus glycoprotein, a common B cell repertoire target of multiple species including primates and rodents.

17.
PLoS Pathog ; 17(2): e1009282, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33556147

RESUMEN

Receptor binding studies on sarbecoviruses would benefit from an available toolkit of recombinant spike proteins, or domains thereof, that recapitulate receptor binding properties of native viruses. We hypothesized that trimeric Receptor Binding Domain (RBD) proteins would be suitable candidates to study receptor binding properties of SARS-CoV-1 and -2. Here we created monomeric and trimeric fluorescent RBD proteins, derived from adherent HEK293T, as well as in GnTI-/- mutant cells, to analyze the effect of complex vs high mannose glycosylation on receptor binding. The results demonstrate that trimeric, complex glycosylated proteins are superior in receptor binding compared to monomeric and immaturely glycosylated variants. Although differences in binding to commonly used cell lines were minimal between the different RBD preparations, substantial differences were observed when respiratory tissues of experimental animals were stained. The RBD trimers demonstrated distinct ACE2 expression profiles in bronchiolar ducts and confirmed the higher binding affinity of SARS-CoV-2 over SARS-CoV-1. Our results show that complex glycosylated trimeric RBD proteins are attractive to analyze sarbecovirus receptor binding and explore ACE2 expression profiles in tissues.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Multimerización de Proteína , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células A549 , Enzima Convertidora de Angiotensina 2/genética , Animales , Chlorocebus aethiops , Perros , Glicosilación , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Mesocricetus , Ratones , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Unión Proteica , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Células Vero
18.
Cell Rep ; 34(4): 108682, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33503432

RESUMEN

Novel influenza A virus (IAV) strains elicit recall immune responses to conserved epitopes, making them favorable antigenic choices for universal influenza virus vaccines. Evaluating these immunogens requires a thorough understanding of the antigenic sites targeted by the polyclonal antibody (pAb) response, which single-particle electron microscopy (EM) can sensitively detect. In this study, we employ EM polyclonal epitope mapping (EMPEM) to extensively characterize the pAb response to hemagglutinin (HA) after H5N1 immunization in humans. Cross-reactive pAbs originating from memory B cells immediately bound the stem of HA and persisted for more than a year after vaccination. In contrast, de novo pAb responses to multiple sites on the head of HA, targeting previously determined key neutralizing sites on H5 HA, expanded after the second immunization and waned quickly. Thus, EMPEM provides a robust tool for comprehensively tracking the specificity and durability of immune responses elicited by novel universal influenza vaccine candidates.


Asunto(s)
Formación de Anticuerpos/inmunología , Mapeo Epitopo/métodos , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Vacunas contra la Influenza/uso terapéutico , Humanos , Vacunas contra la Influenza/farmacología
19.
PLoS Pathog ; 16(12): e1009089, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33275640

RESUMEN

Epitopes that are conserved among SARS-like coronaviruses are attractive targets for design of cross-reactive vaccines and therapeutics. CR3022 is a SARS-CoV neutralizing antibody to a highly conserved epitope on the receptor binding domain (RBD) on the spike protein that is able to cross-react with SARS-CoV-2, but with lower affinity. Using x-ray crystallography, mutagenesis, and binding experiments, we illustrate that of four amino acid differences in the CR3022 epitope between SARS-CoV-2 and SARS-CoV, a single mutation P384A fully determines the affinity difference. CR3022 does not neutralize SARS-CoV-2, but the increased affinity to SARS-CoV-2 P384A mutant now enables neutralization with a similar potency to SARS-CoV. We further investigated CR3022 interaction with the SARS-CoV spike protein by negative-stain EM and cryo-EM. Three CR3022 Fabs bind per trimer with the RBD observed in different up-conformations due to considerable flexibility of the RBD. In one of these conformations, quaternary interactions are made by CR3022 to the N-terminal domain (NTD) of an adjacent subunit. Overall, this study provides insights into antigenic variation and potential cross-neutralizing epitopes on SARS-like viruses.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/virología , SARS-CoV-2/genética , Síndrome Respiratorio Agudo Grave/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Variación Antigénica/genética , Reacciones Cruzadas , Cristalografía por Rayos X , Epítopos/genética , Epítopos/inmunología , Humanos , Mutación , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , SARS-CoV-2/inmunología
20.
Science ; 370(6520): 1089-1094, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33082295

RESUMEN

Vaccine efforts to combat the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for the current coronavirus disease 2019 (COVID-19) pandemic, are focused on SARS-CoV-2 spike glycoprotein, the primary target for neutralizing antibodies. We performed cryo-election microscopy and site-specific glycan analysis of one of the leading subunit vaccine candidates from Novavax, which is based on a full-length spike protein formulated in polysorbate 80 detergent. Our studies reveal a stable prefusion conformation of the spike immunogen with slight differences in the S1 subunit compared with published spike ectodomain structures. We also observed interactions between the spike trimers, allowing formation of higher-order spike complexes. This study confirms the structural integrity of the full-length spike protein immunogen and provides a basis for interpreting immune responses to this multivalent nanoparticle immunogen.


Asunto(s)
Vacunas contra la COVID-19/química , Glicoproteína de la Espiga del Coronavirus/química , Microscopía por Crioelectrón , Humanos , Dominios Proteicos , Multimerización de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...