Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Front Hum Neurosci ; 18: 1383714, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812472

RESUMEN

The purpose of this article is to review the scientific literature concerning speech in Parkinson's disease (PD) with reference to the DIVA/GODIVA neurocomputational modeling framework. Within this theoretical view, the basal ganglia (BG) contribute to several different aspects of speech motor learning and execution. First, the BG are posited to play a role in the initiation and scaling of speech movements. Within the DIVA/GODIVA framework, initiation and scaling are carried out by initiation map nodes in the supplementary motor area acting in concert with the BG. Reduced support of the initiation map from the BG in PD would result in reduced movement intensity as well as susceptibility to early termination of movement. A second proposed role concerns the learning of common speech sequences, such as phoneme sequences comprising words; this view receives support from the animal literature as well as studies identifying speech sequence learning deficits in PD. Third, the BG may play a role in the temporary buffering and sequencing of longer speech utterances such as phrases during conversational speech. Although the literature does not support a critical role for the BG in representing sequence order (since incorrectly ordered speech is not characteristic of PD), the BG are posited to contribute to the scaling of individual movements in the sequence, including increasing movement intensity for emphatic stress on key words. Therapeutic interventions for PD have inconsistent effects on speech. In contrast to dopaminergic treatments, which typically either leave speech unchanged or lead to minor improvements, deep brain stimulation (DBS) can degrade speech in some cases and improve it in others. However, cases of degradation may be due to unintended stimulation of efferent motor projections to the speech articulators. Findings of spared speech after bilateral pallidotomy appear to indicate that any role played by the BG in adult speech must be supplementary rather than mandatory, with the sequential order of well-learned sequences apparently represented elsewhere (e.g., in cortico-cortical projections).

2.
bioRxiv ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38586036

RESUMEN

Objective: Oscillations figure prominently as neurological disease hallmarks and neuromodulation targets. To detect oscillations in a neuron's spiking, one might attempt to seek peaks in the spike train's power spectral density (PSD) which exceed a flat baseline. Yet for a non-oscillating neuron, the PSD is not flat: The recovery period ("RP", the post-spike drop in spike probability, starting with the refractory period) introduces global spectral distortion. An established "shuffling" procedure corrects for RP distortion by removing the spectral component explained by the inter-spike interval (ISI) distribution. However, this procedure sacrifices oscillation-related information present in the ISIs, and therefore in the PSD. We asked whether point process models (PPMs) might achieve more selective RP distortion removal, thereby enabling improved oscillation detection. Approach: In a novel "residuals" method, we first estimate the RP duration (nr) from the ISI distribution. We then fit the spike train with a PPM that predicts spike likelihood based on the time elapsed since the most recent of any spikes falling within the preceding nr milliseconds. Finally, we compute the PSD of the model's residuals. Main results: We compared the residuals and shuffling methods' ability to enable accurate oscillation detection with flat baseline-assuming tests. Over synthetic data, the residuals method generally outperformed the shuffling method in classification of true- versus false-positive oscillatory power, principally due to enhanced sensitivity in sparse spike trains. In single-unit data from the internal globus pallidus (GPi) and ventrolateral anterior thalamus (VLa) of a parkinsonian monkey -- in which alpha-beta oscillations (8-30 Hz) were anticipated -- the residuals method reported the greatest incidence of significant alpha-beta power, with low firing rates predicting residuals-selective oscillation detection. Significance: These results encourage continued development of the residuals approach, to support more accurate oscillation detection. Improved identification of oscillations could promote improved disease models and therapeutic technologies.

3.
bioRxiv ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-37905141

RESUMEN

Speech provides a rich context for exploring human cortical-basal ganglia circuit function, but direct intracranial recordings are rare. We recorded electrocorticographic signals in the cortex synchronously with single units in the subthalamic nucleus (STN), a basal ganglia node that receives direct input from widespread cortical regions, while participants performed a syllable repetition task during deep brain stimulation (DBS) surgery. We discovered that STN neurons exhibited spike-phase coupling (SPC) events with distinct combinations of frequency, location, and timing that indexed specific aspects of speech. The strength of SPC to posterior perisylvian cortex predicted phoneme production accuracy, while that of SPC to perirolandic cortex predicted time taken for articulation Thus, STN-cortical interactions are coordinated via transient bursts of behavior-specific synchronization that involves multiple neuronal populations and timescales. These results both suggest mechanisms that support auditory-sensorimotor integration during speech and explain why firing-rate based models are insufficient for explaining basal ganglia circuit behavior.

4.
Elife ; 122023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37204300

RESUMEN

The subthalamic nucleus (STN) is hypothesized to play a central role in neural processes that regulate self-control. Still uncertain, however, is how that brain structure participates in the dynamically evolving estimation of value that underlies the ability to delay gratification and wait patiently for a gain. To address that gap in knowledge, we studied the spiking activity of neurons in the STN of monkeys during a task in which animals were required to remain motionless for varying periods of time in order to obtain food reward. At the single-neuron and population levels, we found a cost-benefit integration between the desirability of the expected reward and the imposed delay to reward delivery, with STN signals that dynamically combined both attributes of the reward to form a single integrated estimate of value. This neural encoding of subjective value evolved dynamically across the waiting period that intervened after instruction cue. Moreover, this encoding was distributed inhomogeneously along the antero-posterior axis of the STN such that the most dorso-posterior-placed neurons represented the temporal discounted value most strongly. These findings highlight the selective involvement of the dorso-posterior STN in the representation of temporally discounted rewards. The combination of rewards and time delays into an integrated representation is essential for self-control, the promotion of goal pursuit, and the willingness to bear the costs of time delays.


Asunto(s)
Autocontrol , Núcleo Subtalámico , Animales , Núcleo Subtalámico/fisiología , Recompensa , Primates , Motivación
5.
Elife ; 112022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35621994

RESUMEN

Brain signal decoding promises significant advances in the development of clinical brain computer interfaces (BCI). In Parkinson's disease (PD), first bidirectional BCI implants for adaptive deep brain stimulation (DBS) are now available. Brain signal decoding can extend the clinical utility of adaptive DBS but the impact of neural source, computational methods and PD pathophysiology on decoding performance are unknown. This represents an unmet need for the development of future neurotechnology. To address this, we developed an invasive brain-signal decoding approach based on intraoperative sensorimotor electrocorticography (ECoG) and subthalamic LFP to predict grip-force, a representative movement decoding application, in 11 PD patients undergoing DBS. We demonstrate that ECoG is superior to subthalamic LFP for accurate grip-force decoding. Gradient boosted decision trees (XGBOOST) outperformed other model architectures. ECoG based decoding performance negatively correlated with motor impairment, which could be attributed to subthalamic beta bursts in the motor preparation and movement period. This highlights the impact of PD pathophysiology on the neural capacity to encode movement vigor. Finally, we developed a connectomic analysis that could predict grip-force decoding performance of individual ECoG channels across patients by using their connectomic fingerprints. Our study provides a neurophysiological and computational framework for invasive brain signal decoding to aid the development of an individualized precision-medicine approach to intelligent adaptive DBS.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Encéfalo , Electrocorticografía , Humanos , Movimiento
6.
Cell Rep ; 38(10): 110477, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35263607

RESUMEN

How the basal ganglia participate in the uniquely human behavior of speech is poorly understood, despite their known role in modulating critical aspects of cognitive and motor behavior. The subthalamic nucleus (STN) is well positioned to facilitate basal ganglia functions critical for speech. Using electrocorticography in patients undergoing awake deep brain stimulation (DBS) surgery, evidence is reported for a left opercular hyperdirect pathway in humans via stimulating the STN and examining antidromic-evoked activity in the left temporal, parietal, and frontal opercular cortex. These high-resolution cortical and subcortical mapping data provide evidence for hyperdirect connectivity between the inferior frontal gyrus and the STN. In addition, evoked potential data are consistent with the presence of monosynaptic projections from areas of the opercular speech cortex that are primarily sensory, including the auditory cortex, to the STN. These connections may be unique to humans, evolving alongside the ability for speech.


Asunto(s)
Núcleo Subtalámico , Ganglios Basales , Potenciales Evocados , Humanos , Vías Nerviosas/fisiología , Habla
7.
PLoS One ; 17(3): e0257711, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35245294

RESUMEN

Response activation and inhibition are functions fundamental to executive control that are disrupted in Parkinson disease (PD). We used magnetoencephalography to examine event related changes in oscillatory power amplitude, peak latency and frequency in cortical networks subserving these functions and identified abnormalities associated with PD. Participants (N = 18 PD, 18 control) performed a cue/target task that required initiation of an un-cued movement (activation) or inhibition of a cued movement. Reaction times were variable but similar across groups. Task related responses in gamma, alpha, and beta power were found across cortical networks including motor cortex, supplementary and pre- supplementary motor cortex, posterior parietal cortex, prefrontal cortex and anterior cingulate. PD-related changes in power and latency were noted most frequently in the beta band, however, abnormal power and delayed peak latency in the alpha band in the pre-supplementary motor area was suggestive of a compensatory mechanism. PD peak power was delayed in pre-supplementary motor area, motor cortex, and medial frontal gyrus only for activation, which is consistent with deficits in un-cued (as opposed to cued) movement initiation characteristic of PD.


Asunto(s)
Corteza Motora , Enfermedad de Parkinson , Señales (Psicología) , Humanos , Inhibición Psicológica , Movimiento/fisiología
8.
STAR Protoc ; 3(1): 101136, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35112086

RESUMEN

We present an experimental protocol to record neuronal activity during intermittent stimulation of nucleus basalis (NB), as macaque monkeys perform cognitive tasks. This protocol includes implantation of electrodes and generator devices to deliver electrical stimulation to NB using multiple approaches in monkeys. Direct stimulation of NB avoids peripheral cholinergic side effects, optimizes timing, and activates non-cholinergic projection neurons. We describe electrode preparation, surgery, and implantation for direct evaluation of how stimulation affects monkeys' behavior and neuronal activity. For complete details on the use and execution of this profile, please refer to Qi et al. (2021).


Asunto(s)
Núcleo Basal de Meynert , Macaca , Animales , Núcleo Basal de Meynert/fisiología , Estimulación Eléctrica , Haplorrinos , Neuronas/fisiología
9.
PLoS Biol ; 18(10): e3000829, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33048920

RESUMEN

Task-related activity in the ventral thalamus, a major target of basal ganglia output, is often assumed to be permitted or triggered by changes in basal ganglia activity through gating- or rebound-like mechanisms. To test those hypotheses, we sampled single-unit activity from connected basal ganglia output and thalamic nuclei (globus pallidus-internus [GPi] and ventrolateral anterior nucleus [VLa]) in monkeys performing a reaching task. Rate increases were the most common peri-movement change in both nuclei. Moreover, peri-movement changes generally began earlier in VLa than in GPi. Simultaneously recorded GPi-VLa pairs rarely showed short-time-scale spike-to-spike correlations or slow across-trials covariations, and both were equally positive and negative. Finally, spontaneous GPi bursts and pauses were both followed by small, slow reductions in VLa rate. These results appear incompatible with standard gating and rebound models. Still, gating or rebound may be possible in other physiological situations: simulations show how GPi-VLa communication can scale with GPi synchrony and GPi-to-VLa convergence, illuminating how synchrony of basal ganglia output during motor learning or in pathological conditions may render this pathway effective. Thus, in the healthy state, basal ganglia-thalamic communication during learned movement is more subtle than expected, with changes in firing rates possibly being dominated by a common external source.


Asunto(s)
Potenciales de Acción/fisiología , Ganglios Basales/fisiología , Análisis y Desempeño de Tareas , Tálamo/fisiología , Animales , Mapeo Encefálico , Simulación por Computador , Bases de Datos como Asunto , Femenino , Globo Pálido/fisiología , Macaca , Microelectrodos , Movimiento , Neuronas/fisiología , Tiempo de Reacción/fisiología , Descanso/fisiología , Núcleos Talámicos Ventrales/fisiología
10.
J Neurosci Methods ; 343: 108839, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32621915

RESUMEN

BACKGROUND: After physiological recordings are performed in behaving animals, it is valuable to identify microelectrode tracks in histological sections so that neuronal responses can be correlated with brain anatomy. However, no good method currently exists for long-term labeling, so that microelectrode tracks can be recovered months or even years after recording sessions. NEW METHOD: Penetrations were made into the brains of mice with microelectrodes coated with fluorescent dyes packaged into 0.2 µm polystyrene microspheres, followed by survival periods of 3 days, 2, 4, or 6 months. Sections were examined by fluorescence microscopy before and after cytochrome oxidase histochemistry to identify microelectrode tracks. RESULTS: After all 4 survival periods, 0.2 µm fluorescent microspheres clearly marked the tracks of microelectrode penetrations. COMPARISON WITH EXISTING METHODS: Fluorescent microspheres label microelectrode penetrations for longer than do fluorescent lipophilic dyes, such as FM 1-43FX. The label appears punctate, and resistant to degradation, because it is protected by the barrier of the polystyrene micro-container. CONCLUSIONS: Coating of microelectrodes with fluorescent microspheres allows one to identify the penetration track in histological sections half a year later. This technique may be useful when electrophysiological recording sessions are being carried out in behaving animals, with plans to identify electrode tracks in histological sections many months later.


Asunto(s)
Látex , Neuronas , Animales , Colorantes Fluorescentes , Ratones , Microelectrodos , Microesferas
11.
Elife ; 92020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32159515

RESUMEN

Cortico-basal ganglia interactions continuously shape the way we move. Ideas about how this circuit works are based largely on models those consider only firing rate as the mechanism of information transfer. A distinct feature of neural activity accompanying movement, however, is increased motor cortical and basal ganglia gamma synchrony. To investigate the relationship between neuronal firing in the basal ganglia and cortical gamma activity during movement, we analysed human ECoG and subthalamic nucleus (STN) unit activity during hand gripping. We found that fast reaction times were preceded by enhanced STN spike-to-cortical gamma phase coupling, indicating a role in motor preparation. Importantly, increased gamma phase coupling occurred independent of changes in mean STN firing rates, and the relative timing of STN spikes was offset by half a gamma cycle for ipsilateral vs. contralateral movements, indicating that relative spike timing is as relevant as firing rate for understanding cortico-basal ganglia information transfer.


Asunto(s)
Potenciales de Acción/fisiología , Actividad Motora/fisiología , Núcleo Subtalámico/fisiología , Sincronización Cortical , Estimulación Encefálica Profunda , Electrocorticografía , Fenómenos Electrofisiológicos , Humanos , Corteza Motora/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología , Enfermedad de Parkinson
12.
Cereb Cortex ; 30(4): 2615-2626, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-31989165

RESUMEN

The subthalamic nucleus (STN) is proposed to participate in pausing, or alternately, in dynamic scaling of behavioral responses, roles that have conflicting implications for understanding STN function in the context of deep brain stimulation (DBS) therapy. To examine the nature of event-related STN activity and subthalamic-cortical dynamics, we performed primary motor and somatosensory electrocorticography while subjects (n = 10) performed a grip force task during DBS implantation surgery. Phase-locking analyses demonstrated periods of STN-cortical coherence that bracketed force transduction, in both beta and gamma ranges. Event-related causality measures demonstrated that both STN beta and gamma activity predicted motor cortical beta and gamma activity not only during force generation but also prior to movement onset. These findings are consistent with the idea that the STN participates in motor planning, in addition to the modulation of ongoing movement. We also demonstrated bidirectional information flow between the STN and somatosensory cortex in both beta and gamma range frequencies, suggesting robust STN participation in somatosensory integration. In fact, interactions in beta activity between the STN and somatosensory cortex, and not between STN and motor cortex, predicted PD symptom severity. Thus, the STN contributes to multiple aspects of sensorimotor behavior dynamically across time.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Electrocorticografía/métodos , Fuerza de la Mano/fisiología , Corteza Motora/fisiología , Corteza Somatosensorial/fisiología , Núcleo Subtalámico/fisiología , Adulto , Anciano , Electrodos Implantados , Femenino , Humanos , Masculino , Persona de Mediana Edad , Desempeño Psicomotor/fisiología
13.
J Neurosci ; 39(14): 2698-2708, 2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30700532

RESUMEN

The sensorimotor cortex is somatotopically organized to represent the vocal tract articulators such as lips, tongue, larynx, and jaw. How speech and articulatory features are encoded at the subcortical level, however, remains largely unknown. We analyzed LFP recordings from the subthalamic nucleus (STN) and simultaneous electrocorticography recordings from the sensorimotor cortex of 11 human subjects (1 female) with Parkinson's disease during implantation of deep-brain stimulation (DBS) electrodes while they read aloud three-phoneme words. The initial phonemes involved either articulation primarily with the tongue (coronal consonants) or the lips (labial consonants). We observed significant increases in high-gamma (60-150 Hz) power in both the STN and the sensorimotor cortex that began before speech onset and persisted for the duration of speech articulation. As expected from previous reports, in the sensorimotor cortex, the primary articulators involved in the production of the initial consonants were topographically represented by high-gamma activity. We found that STN high-gamma activity also demonstrated specificity for the primary articulator, although no clear topography was observed. In general, subthalamic high-gamma activity varied along the ventral-dorsal trajectory of the electrodes, with greater high-gamma power recorded in the dorsal locations of the STN. Interestingly, the majority of significant articulator-discriminative activity in the STN occurred before that in sensorimotor cortex. These results demonstrate that articulator-specific speech information is contained within high-gamma activity of the STN, but with different spatial and temporal organization compared with similar information encoded in the sensorimotor cortex.SIGNIFICANCE STATEMENT Clinical and electrophysiological evidence suggest that the subthalamic nucleus (STN) is involved in speech; however, this important basal ganglia node is ignored in current models of speech production. We previously showed that STN neurons differentially encode early and late aspects of speech production, but no previous studies have examined subthalamic functional organization for speech articulators. Using simultaneous LFP recordings from the sensorimotor cortex and the STN in patients with Parkinson's disease undergoing deep-brain stimulation surgery, we discovered that STN high-gamma activity tracks speech production at the level of vocal tract articulators before the onset of vocalization and often before related cortical encoding.


Asunto(s)
Mapeo Encefálico/métodos , Electrocorticografía/métodos , Estimulación Luminosa/métodos , Corteza Sensoriomotora/fisiología , Habla/fisiología , Núcleo Subtalámico/fisiología , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad
14.
Neurotherapeutics ; 16(1): 105-118, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30607748

RESUMEN

Deep brain stimulation (DBS) represents one of the major clinical breakthroughs in the age of translational neuroscience. In 1987, Benabid and colleagues demonstrated that high-frequency stimulation can mimic the effects of ablative neurosurgery in Parkinson's disease (PD), while offering two key advantages to previous procedures: adjustability and reversibility. Deep brain stimulation is now an established therapeutic approach that robustly alleviates symptoms in patients with movement disorders, such as Parkinson's disease, essential tremor, and dystonia, who present with inadequate or adverse responses to medication. Currently, stimulation electrodes are implanted in specific target regions of the basal ganglia-thalamic circuit and stimulation pulses are delivered chronically. To achieve optimal therapeutic effect, stimulation frequency, amplitude, and pulse width must be adjusted on a patient-specific basis by a movement disorders specialist. The finding that pathological neural activity can be sampled directly from the target region using the DBS electrode has inspired a novel DBS paradigm: closed-loop adaptive DBS (aDBS). The goal of this strategy is to identify pathological and physiologically normal patterns of neuronal activity that can be used to adapt stimulation parameters to the concurrent therapeutic demand. This review will give detailed insight into potential biomarkers and discuss next-generation strategies, implementing advances in artificial intelligence, to further elevate the therapeutic potential of DBS by capitalizing on its modifiable nature. Development of intelligent aDBS, with an ability to deliver highly personalized treatment regimens and to create symptom-specific therapeutic strategies in real-time, could allow for significant further improvements in the quality of life for movement disorders patients with DBS that ultimately could outperform traditional drug treatment.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Trastornos del Movimiento/terapia , Electrofisiología/métodos , Humanos
15.
Neuroscience ; 399: 167-183, 2019 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-30578975

RESUMEN

Midbrain dopamine neurons are thought to play a crucial role in motivating behaviors toward desired goals. While the activity of dopamine single-units is known to adhere closely to the reward prediction error (RPE) signal hypothesized by learning theory, much less is known about the dynamic coordination of population-level neuronal activities in the midbrain. Local field potentials (LFPs) are thought to reflect the changes in membrane potential synchronized across a population of neurons nearby a recording electrode. These changes involve complex combinations of local spiking activity with synaptic processing that are difficult to interpret. Here we sampled LFPs from the substantia nigra pars compacta (SNc) of behaving monkeys to determine if local population-level synchrony encodes specific aspects of a reward/effort instrumental task and whether dopamine single-units participate in that signal. We found that reward-correlated information is encoded in a low-frequency signal (<32-Hz; delta and beta bands) that is synchronized across a neural population that includes dopamine neurons. Conversely, high-frequency power (>33-Hz; gamma band) was anticorrelated with predicted reward value and dopamine single-units were never phase-locked to those frequencies. This high-frequency signal may reflect inhibitory processes that were not otherwise observable. LFP encoding of movement-related parameters was negligible. Together, LFPs provide novel insights into the multidimensional processing of reward information subserved by dopaminergic and other components of the midbrain.


Asunto(s)
Dopamina/metabolismo , Porción Compacta de la Sustancia Negra/fisiología , Potenciales de Acción , Animales , Ritmo beta/fisiología , Condicionamiento Operante/fisiología , Ritmo Delta/fisiología , Neuronas Dopaminérgicas/fisiología , Femenino , Macaca mulatta , Masculino , Microelectrodos , Actividad Motora/fisiología , Recompensa , Procesamiento de Señales Asistido por Computador
16.
J Neurosci ; 38(24): 5620-5631, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29789378

RESUMEN

Basal ganglia-thalamocortical loops mediate all motor behavior, yet little detail is known about the role of basal ganglia nuclei in speech production. Using intracranial recording during deep brain stimulation surgery in humans with Parkinson's disease, we tested the hypothesis that the firing rate of subthalamic nucleus neurons is modulated in sync with motor execution aspects of speech. Nearly half of 79 unit recordings exhibited firing-rate modulation during a syllable reading task across 12 subjects (male and female). Trial-to-trial timing of changes in subthalamic neuronal activity, relative to cue onset versus production onset, revealed that locking to cue presentation was associated more with units that decreased firing rate, whereas locking to speech onset was associated more with units that increased firing rate. These unique data indicate that subthalamic activity is dynamic during the production of speech, reflecting temporally-dependent inhibition and excitation of separate populations of subthalamic neurons.SIGNIFICANCE STATEMENT The basal ganglia are widely assumed to participate in speech production, yet no prior studies have reported detailed examination of speech-related activity in basal ganglia nuclei. Using microelectrode recordings from the subthalamic nucleus during a single-syllable reading task, in awake humans undergoing deep brain stimulation implantation surgery, we show that the firing rate of subthalamic nucleus neurons is modulated in response to motor execution aspects of speech. These results are the first to establish a role for subthalamic nucleus neurons in encoding of aspects of speech production, and they lay the groundwork for launching a modern subfield to explore basal ganglia function in human speech.


Asunto(s)
Neuronas/fisiología , Habla/fisiología , Núcleo Subtalámico/fisiología , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad
17.
Elife ; 62017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29199955

RESUMEN

The subthalamic nucleus (STN) is hypothesized to play a central role in the rapid stopping of movement in reaction to a stop signal. Single-unit recording evidence for such a role is sparse, however, and it remains uncertain how that role relates to the disparate functions described for anatomic subdivisions of the STN. Here we address that gap in knowledge using non-human primates and a task that distinguishes reactive and proactive action inhibition, switching and skeletomotor functions. We found that specific subsets of STN neurons have activity consistent with causal roles in reactive action stopping or switching. Importantly, these neurons were strictly segregated to a ventromedial region of STN. Neurons in other subdivisions encoded task dimensions such as movement per se and proactive control. We propose that the involvement of STN in reactive control is restricted to its ventromedial portion, further implicating this STN subdivision in impulse control disorders.


Asunto(s)
Inhibición Neural , Núcleo Subtalámico/fisiología , Animales , Macaca mulatta , Movimiento , Neuronas/fisiología
18.
J Neurophysiol ; 118(3): 1472-1487, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28592690

RESUMEN

Coupled oscillatory activity recorded between sensorimotor regions of the basal ganglia-thalamocortical loop is thought to reflect information transfer relevant to movement. A neuronal firing-rate model of basal ganglia-thalamocortical circuitry, however, has dominated thinking about basal ganglia function for the past three decades, without knowledge of the relationship between basal ganglia single neuron firing and cortical population activity during movement itself. We recorded activity from 34 subthalamic nucleus (STN) neurons, simultaneously with cortical local field potentials and motor output, in 11 subjects with Parkinson's disease (PD) undergoing awake deep brain stimulator lead placement. STN firing demonstrated phase synchronization to both low- and high-beta-frequency cortical oscillations, and to the amplitude envelope of gamma oscillations, in motor cortex. We found that during movement, the magnitude of this synchronization was dynamically modulated in a phase-frequency-specific manner. Importantly, we found that phase synchronization was not correlated with changes in neuronal firing rate. Furthermore, we found that these relationships were not exclusive to motor cortex, because STN firing also demonstrated phase synchronization to both premotor and sensory cortex. The data indicate that models of basal ganglia function ultimately will need to account for the activity of populations of STN neurons that are bound in distinct functional networks with both motor and sensory cortices and code for movement parameters independent of changes in firing rate.NEW & NOTEWORTHY Current models of basal ganglia-thalamocortical networks do not adequately explain simple motor functions, let alone dysfunction in movement disorders. Our findings provide data that inform models of human basal ganglia function by demonstrating how movement is encoded by networks of subthalamic nucleus (STN) neurons via dynamic phase synchronization with cortex. The data also demonstrate, for the first time in humans, a mechanism through which the premotor and sensory cortices are functionally connected to the STN.


Asunto(s)
Movimiento , Neuronas/fisiología , Corteza Sensoriomotora/fisiología , Núcleo Subtalámico/fisiología , Anciano , Ritmo beta , Sincronización Cortical , Femenino , Ritmo Gamma , Humanos , Masculino , Persona de Mediana Edad , Corteza Sensoriomotora/citología , Núcleo Subtalámico/citología
19.
Nat Commun ; 7: 12176, 2016 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-27397420

RESUMEN

How to move efficiently is an optimal control problem, whose computational complexity grows exponentially with the horizon of the planned trajectory. Breaking a compound movement into a series of chunks, each planned over a shorter horizon can thus reduce the overall computational complexity and associated costs while limiting the achievable efficiency. This trade-off suggests a cost-effective learning strategy: to learn new movements we should start with many short chunks (to limit the cost of computation). As practice reduces the impediments to more complex computation, the chunking structure should evolve to allow progressively more efficient movements (to maximize efficiency). Here we show that monkeys learning a reaching sequence over an extended period of time adopt this strategy by performing movements that can be described as locally optimal trajectories. Chunking can thus be understood as a cost-effective strategy for producing and learning efficient movements.


Asunto(s)
Eficiencia , Aprendizaje , Modelos Biológicos , Movimiento , Animales , Conducta Animal , Femenino , Macaca mulatta
20.
Brain ; 139(Pt 8): 2211-23, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27329771

RESUMEN

Recent electrocorticography data have demonstrated excessive coupling of beta-phase to gamma-amplitude in primary motor cortex and that deep brain stimulation facilitates motor improvement by decreasing baseline phase-amplitude coupling. However, both the dynamic modulation of phase-amplitude coupling during movement and the general cortical neurophysiology of other movement disorders, such as essential tremor, are relatively unexplored. To clarify the relationship of these interactions in cortical oscillatory activity to movement and disease state, we recorded local field potentials from hand sensorimotor cortex using subdural electrocorticography during a visually cued, incentivized handgrip task in subjects with Parkinson's disease (n = 11), with essential tremor (n = 9) and without a movement disorder (n = 6). We demonstrate that abnormal coupling of the phase of low frequency oscillations to the amplitude of gamma oscillations is not specific to Parkinson's disease, but also occurs in essential tremor, most prominently for the coupling of alpha to gamma oscillations. Movement kinematics were not significantly different between these groups, allowing us to show for the first time that robust alpha and beta desynchronization is a shared feature of sensorimotor cortical activity in Parkinson's disease and essential tremor, with the greatest high-beta desynchronization occurring in Parkinson's disease and the greatest alpha desynchronization occurring in essential tremor. We also show that the spatial extent of cortical phase-amplitude decoupling during movement is much greater in subjects with Parkinson's disease and essential tremor than in subjects without a movement disorder. These findings suggest that subjects with Parkinson's disease and essential tremor can produce movements that are kinematically similar to those of subjects without a movement disorder by reducing excess sensorimotor cortical phase-amplitude coupling that is characteristic of these diseases.


Asunto(s)
Ondas Encefálicas/fisiología , Electrocorticografía/métodos , Sincronización de Fase en Electroencefalografía/fisiología , Temblor Esencial/fisiopatología , Actividad Motora/fisiología , Enfermedad de Parkinson/fisiopatología , Desempeño Psicomotor/fisiología , Corteza Sensoriomotora/fisiopatología , Adulto , Anciano , Fenómenos Biomecánicos , Femenino , Mano , Humanos , Masculino , Persona de Mediana Edad , Corteza Motora/fisiopatología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...