Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 9: 1703, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30542356

RESUMEN

Carrot is a globally important crop, yet efficient and accurate methods for quantifying its most important agronomic traits are lacking. To address this problem, we developed an automated image analysis platform that extracts components of size and shape for carrot shoots and roots, which are necessary to advance carrot breeding and genetics. This method reliably measured variation in shoot size and shape, petiole number, petiole length, and petiole width as evidenced by high correlations with hundreds of manual measurements. Similarly, root length and biomass were accurately measured from the images. This platform also quantified shoot and root shapes in terms of principal components, which do not have traditional, manually measurable equivalents. We applied the pipeline in a study of a six-parent diallel population and an F2 mapping population consisting of 316 individuals. We found high levels of repeatability within a growing environment, with low to moderate repeatability across environments. We also observed co-localization of quantitative trait loci for shoot and root characteristics on chromosomes 1, 2, and 7, suggesting these traits are controlled by genetic linkage and/or pleiotropy. By increasing the number of individuals and phenotypes that can be reliably quantified, the development of a rapid, automated image analysis pipeline to measure carrot shoot and root morphology will expand the scope and scale of breeding and genetic studies.

2.
G3 (Bethesda) ; 8(2): 411-426, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29187419

RESUMEN

Crop establishment in carrot (Daucus carota L.) is limited by slow seedling growth and delayed canopy closure, resulting in high management costs for weed control. Varieties with improved growth habit (i.e., larger canopy and increased shoot biomass) may help mitigate weed control, but the underlying genetics of these traits in carrot is unknown. This project used a diallel mating design coupled with recent Bayesian analytical methods to determine the genetic basis of carrot shoot growth. Six diverse carrot inbred lines with variable shoot size were crossed in WI in 2014. F1 hybrids, reciprocal crosses, and parental selfs were grown in a randomized complete block design with two blocks in WI (2015) and CA (2015, 2016). Measurements included canopy height, canopy width, shoot biomass, and root biomass. General and specific combining abilities were estimated using Griffing's Model I, which is a common analysis for plant breeding experiments. In parallel, additive, inbred, cross-specific, and maternal effects were estimated from a Bayesian mixed model, which is robust to dealing with data imbalance and outliers. Both additive and nonadditive effects significantly influenced shoot traits, with nonadditive effects playing a larger role early in the growing season, when weed control is most critical. Results suggest the presence of heritable variation and thus potential for improvement of these phenotypes in carrot. In addition, results present evidence of heterosis for root biomass, which is a major component of carrot yield.


Asunto(s)
Daucus carota/genética , Vigor Híbrido/genética , Fitomejoramiento/métodos , Brotes de la Planta/genética , Teorema de Bayes , Biomasa , Daucus carota/clasificación , Daucus carota/crecimiento & desarrollo , Genotipo , Fenotipo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...