Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Clin Microbiol Infect Dis ; 37(10): 1881-1891, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30006660

RESUMEN

As urinary tract infection (UTI) pathogens originate from the gut, we hypothesized that the gut environment reflected by intestinal microbiome influences the risk of UTI. Our prospective case-control study compared the intestinal microbiomes of 37 children with a febrile UTI with those of 69 healthy children. We sequenced the regions of the bacterial 16S rRNA gene and used the LefSe algorithm to calculate the size of the linear discriminant analysis (LDA) effect. We measured fecal lactoferrin and iron concentrations and quantitative PCR for Escherichia coli. At the phylum level, there were no significant differences. At the genus level, Enterobacter was more abundant in UTI patients with an LDA score > 3 (log 10), while Peptostreptococcaceae were more abundant in healthy subjects with an LDA score > 3 (log 10). In total, 20 OTUs with significantly different abundances were observed. Previous use of antimicrobials did not associate with intestinal microbiome. The relative abundance of E. coli was 1.9% in UTI patients and 0.5% in controls (95% CI of the difference-0.8 to 3.6%). The mean concentration of E.coli in quantitative PCR was 0.14 ng/µl in the patients and 0.08 ng/µl in the controls (95% CI of the difference-0.04 to 0.16). Fecal iron and lactoferrin concentrations were similar between the groups. At the family and genus level, we noted several differences in the intestinal microbiome between children with UTI and healthy children, which may imply that the gut environment is linked with the risk of UTI in children.


Asunto(s)
Microbioma Gastrointestinal , Infecciones Urinarias/microbiología , Estudios de Casos y Controles , Preescolar , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Heces/química , Heces/microbiología , Femenino , Humanos , Lactante , Hierro/análisis , Lactoferrina/análisis , Masculino , Estudios Prospectivos , ARN Ribosómico 16S/genética , Factores de Riesgo
2.
J Nat Prod ; 79(4): 685-90, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-27057690

RESUMEN

Three new epithiodiketopiperazine natural products [outovirin A (1), outovirin B (2), and outovirin C (3)] resembling the antifungal natural product gliovirin have been identified in extracts of Penicillium raciborskii, an endophytic fungus isolated from Rhododendron tomentosum. The compounds are unusual for their class in that they possess sulfide bridges between α- and ß-carbons rather than the typical α-α bridging. To our knowledge, outovirin A represents the first reported naturally produced epimonothiodiketopiperazine, and antifungal outovirin C is the first reported trisulfide gliovirin-like compound. This report describes the identification and structural elucidation of the compounds by LC-MS/MS and NMR.


Asunto(s)
Antifúngicos/aislamiento & purificación , Penicillium/química , Piperazinas/aislamiento & purificación , Rhododendron/microbiología , Antifúngicos/química , Antifúngicos/farmacología , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Piperazinas/química , Piperazinas/farmacología
3.
Nat Chem Biol ; 12(5): 332-8, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26974813

RESUMEN

Bacteria rely mainly on enzymes, glutathione and other low-molecular weight thiols to overcome oxidative stress. However, hydroxyl radicals are the most cytotoxic reactive oxygen species, and no known enzymatic system exists for their detoxification. We now show that methyl-esterified dimers and trimers of 3-hydroxybutyrate (ME-3HB), produced by bacteria capable of polyhydroxybutyrate biosynthesis, have 3-fold greater hydroxyl radical-scavenging activity than glutathione and 11-fold higher activity than vitamin C or the monomer 3-hydroxybutyric acid. We found that ME-3HB oligomers protect hypersensitive yeast deletion mutants lacking oxidative stress-response genes from hydroxyl radical stress. Our results show that phaC and phaZ, encoding polymerase and depolymerase, respectively, are activated and polyhydroxybutyrate reserves are degraded for production of ME-3HB oligomers in bacteria infecting plant cells and exposed to hydroxyl radical stress. We found that ME-3HB oligomer production is widespread, especially in bacteria adapted to stressful environments. We discuss how ME-3HB oligomers could provide opportunities for numerous applications in human health.


Asunto(s)
Hidroxibutiratos/metabolismo , Radical Hidroxilo/toxicidad , Methylobacterium extorquens/metabolismo , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica , Peróxido de Hidrógeno , Radical Hidroxilo/metabolismo , Hierro , Estructura Molecular , Pinus/microbiología , Enfermedades de las Plantas , Plantones
4.
J Virol ; 90(4): 1918-30, 2016 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-26656684

RESUMEN

UNLABELLED: Hepatitis C virus (HCV) infection is the leading cause of chronic liver diseases. Water extracts of the leaves of the wild Egyptian artichoke (WEA) [Cynara cardunculus L. var. sylvestris (Lam.) Fiori] have been used for centuries in the Sinai Peninsula to treat hepatitis symptoms. Here we isolated and characterized six compounds from the water extracts of WEA and evaluated their HCV inhibition capacities in vitro. Importantly, two of these compounds, grosheimol and cynaropicrin, inhibited HCV with half-maximal effective concentrations (EC50s) in the low micromolar range. They inhibited HCV entry into target cells and were active against both cell-free infection as well as cell-cell transmission. Furthermore, the antiviral activity of both compounds was pan-genotypic as HCV genotypes 1a, 1b, 2b, 3a, 4a, 5a, 6a, and 7a were inhibited. Thus, grosheimol and cynaropicrin are promising candidates for the development of new pan-genotypic entry inhibitors of HCV infection. IMPORTANCE: Because there is no preventive HCV vaccine available today, the discovery of novel anti-HCV cell entry inhibitors could help develop preventive measures against infection. The present study describes two compounds isolated from the wild Egyptian artichoke (WEA) with respect to their structural elucidation, absolute configuration, and quantitative determination. Importantly, both compounds inhibited HCV infection in vitro. The first compound was an unknown molecule, and it was designated "grosheimol," while the second compound is the known molecule cynaropicrin. Both compounds belong to the group of sesquiterpene lactones. The mode of action of these compounds occurred during the early steps of the HCV life cycle, including cell-free and cell-cell infection inhibition. These natural compounds present promising candidates for further development into anti-HCV therapeutics.


Asunto(s)
Antivirales/farmacología , Productos Biológicos/farmacología , Cynara/química , Hepacivirus/efectos de los fármacos , Extractos Vegetales/farmacología , Antivirales/aislamiento & purificación , Productos Biológicos/aislamiento & purificación , Hepacivirus/fisiología , Lactonas/aislamiento & purificación , Lactonas/farmacología , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta/química , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/farmacología , Internalización del Virus/efectos de los fármacos
5.
Nat Prod Rep ; 31(5): 628-45, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24686921

RESUMEN

Covering up to the end of August 2013. Phenalenones are members of a unique class of natural polyketides exhibiting diverse biological potential. This is a comprehensive review of 72 phenalenones with diverse structural features originating from fungal sources. Their bioactive potential and structure elucidation are discussed along with a review of their biosynthetic pathways and the taxonomical relationship between the fungi producing these natural products.


Asunto(s)
Hongos/química , Fenalenos/química , Filogenia , Sintasas Poliquetidas/metabolismo , Productos Biológicos/química , Estructura Molecular , Fenalenos/aislamiento & purificación , Fenalenos/metabolismo , Policétidos/química , Policétidos/aislamiento & purificación , Policétidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA