Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Med ; 218(10)2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34436509

RESUMEN

To egress from its erythrocyte host, the malaria parasite, Plasmodium falciparum, must destabilize the erythrocyte membrane by activating an erythrocyte tyrosine kinase. Because imatinib inhibits erythrocyte tyrosine kinases and because imatinib has a good safety profile, we elected to determine whether coadministration of imatinib with standard of care (SOC) might be both well tolerated and therapeutically efficacious in malaria patients. Patients with uncomplicated P. falciparum malaria from a region in Vietnam where one third of patients experience delayed parasite clearance (DPC; continued parasitemia after 3 d of therapy) were treated for 3 d with either the region's SOC (40 mg dihydroartemisinin + 320 mg piperaquine/d) or imatinib (400 mg/d) + SOC. Imatinib + SOC-treated participants exhibited no increase in number or severity of adverse events, a significantly accelerated decline in parasite density and pyrexia, and no DPC. Surprisingly, these improvements were most pronounced in patients with the highest parasite density, where serious complications and death are most frequent. Imatinib therefore appears to improve SOC therapy, with no obvious drug-related toxicities.


Asunto(s)
Antimaláricos/efectos adversos , Antimaláricos/uso terapéutico , Mesilato de Imatinib/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Adolescente , Adulto , Artemisininas/uso terapéutico , Quimioterapia Combinada , Fiebre/tratamiento farmacológico , Fiebre/microbiología , Humanos , Mesilato de Imatinib/efectos adversos , Malaria Falciparum/parasitología , Persona de Mediana Edad , Quinolinas/uso terapéutico , Resultado del Tratamiento , Vietnam , Adulto Joven
2.
Br J Haematol ; 190(4): 599-609, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32346864

RESUMEN

Many hypotheses have been proposed to explain how a glutamate to valine substitution in sickle haemoglobin (HbS) can cause sickle cell disease (SCD). We propose and document a new mechanism in which elevated tyrosine phosphorylation of Band 3 initiates sequelae that cause vaso-occlusion and the symptoms of SCD. In this mechanism, denaturation of HbS and release of heme generate intracellular oxidants which cause inhibition of erythrocyte tyrosine phosphatases, thus permitting constitutive tyrosine phosphorylation of Band 3. This phosphorylation in turn induces dissociation of the spectrin-actin cytoskeleton from the membrane, leading to membrane weakening, discharge of membrane-derived microparticles (which initiate the coagulation cascade) and release of cell-free HbS (which consumes nitric oxide) and activates the endothelium to express adhesion receptors). These processes promote vaso-occlusive events which cause SCD. We further show that inhibitors of Syk tyrosine kinase block Band 3 tyrosine phosphorylation, prevent release of cell-free Hb, inhibit discharge of membrane-derived microparticles, increase sickle cell deformability, reduce sickle cell adhesion to human endothelial cells, and enhance sickle cell flow through microcapillaries. In view of reports that imatinib (a Syk inhibitor) successfully treats symptoms of sickle cell disease, we suggest that Syk tyrosine kinase inhibitors warrant repurposing as potential treatments for SCD.


Asunto(s)
Anemia de Células Falciformes/tratamiento farmacológico , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Anemia de Células Falciformes/sangre , Adhesión Celular/efectos de los fármacos , Micropartículas Derivadas de Células/química , Evaluación Preclínica de Medicamentos , Endotelio Vascular/metabolismo , Deformación Eritrocítica/efectos de los fármacos , Membrana Eritrocítica/efectos de los fármacos , Eritrocitos Anormales/efectos de los fármacos , Eritrocitos Anormales/metabolismo , Hemoglobina Falciforme/análisis , Humanos , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Estrés Oxidativo , Oxígeno/sangre , Fosforilación/efectos de los fármacos , Fosfotirosina/metabolismo , Plasma , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Rasgo Drepanocítico/sangre , Talasemia beta/sangre
3.
Blood ; 130(8): 1031-1040, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28634183

RESUMEN

Band 3 (also known as the anion exchanger, SLCA1, AE1) constitutes the major attachment site of the spectrin-based cytoskeleton to the erythrocyte's lipid bilayer and thereby contributes critically to the stability of the red cell membrane. During the intraerythrocytic stage of Plasmodium falciparum's lifecycle, band 3 becomes tyrosine phosphorylated in response to oxidative stress, leading to a decrease in its affinity for the spectrin/actin cytoskeleton and causing global membrane destabilization. Because this membrane weakening is hypothesized to facilitate parasite egress and the consequent dissemination of released merozoites throughout the bloodstream, we decided to explore which tyrosine kinase inhibitors might block the kinase-induced membrane destabilization. We demonstrate here that multiple Syk kinase inhibitors both prevent parasite-induced band 3 tyrosine phosphorylation and inhibit parasite-promoted membrane destabilization. We also show that the same Syk kinase inhibitors suppress merozoite egress near the end of the parasite's intraerythrocytic lifecycle. Because the entrapped merozoites die when prevented from escaping their host erythrocytes and because some Syk inhibitors have displayed long-term safety in human clinical trials, we suggest Syk kinase inhibitors constitute a promising class of antimalarial drugs that can suppress parasitemia by inhibiting a host target that cannot be mutated by the parasite to evolve drug resistance.


Asunto(s)
Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/parasitología , Parásitos/crecimiento & desarrollo , Plasmodium falciparum/crecimiento & desarrollo , Inhibidores de Proteínas Quinasas/farmacología , Quinasa Syk/antagonistas & inhibidores , Adulto , Animales , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Diferenciación Celular/efectos de los fármacos , Membrana Eritrocítica/efectos de los fármacos , Membrana Eritrocítica/ultraestructura , Femenino , Humanos , Concentración 50 Inhibidora , Malaria Falciparum , Masculino , Parásitos/efectos de los fármacos , Parásitos/ultraestructura , Fosforilación/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/ultraestructura , Quinasa Syk/metabolismo
4.
Proc Natl Acad Sci U S A ; 113(48): 13732-13737, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27856737

RESUMEN

Src homology 2 (SH2) domains are composed of weakly conserved sequences of ∼100 aa that bind phosphotyrosines in signaling proteins and thereby mediate intra- and intermolecular protein-protein interactions. In exploring the mechanism whereby tyrosine phosphorylation of the erythrocyte anion transporter, band 3, triggers membrane destabilization, vesiculation, and fragmentation, we discovered a SH2 signature motif positioned between membrane-spanning helices 4 and 5. Evidence that this exposed cytoplasmic sequence contributes to a functional SH2-like domain is provided by observations that: (i) it contains the most conserved sequence of SH2 domains, GSFLVR; (ii) it binds the tyrosine phosphorylated cytoplasmic domain of band 3 (cdb3-PO4) with Kd = 14 nM; (iii) binding of cdb3-PO4 to erythrocyte membranes is inhibited both by antibodies against the SH2 signature sequence and dephosphorylation of cdb3-PO4; (iv) label transfer experiments demonstrate the covalent transfer of photoactivatable biotin from isolated cdb3-PO4 (but not cdb3) to band 3 in erythrocyte membranes; and (v) phosphorylation-induced binding of cdb3-PO4 to the membrane-spanning domain of band 3 in intact cells causes global changes in membrane properties, including (i) displacement of a glycolytic enzyme complex from the membrane, (ii) inhibition of anion transport, and (iii) rupture of the band 3-ankyrin bridge connecting the spectrin-based cytoskeleton to the membrane. Because SH2-like motifs are not retrieved by normal homology searches for SH2 domains, but can be found in many tyrosine kinase-regulated transport proteins using modified search programs, we suggest that related cases of membrane transport proteins containing similar motifs are widespread in nature where they participate in regulation of cell properties.


Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito/genética , Eritrocitos/química , Dominios y Motivos de Interacción de Proteínas/genética , Dominios Homologos src/genética , Proteína 1 de Intercambio de Anión de Eritrocito/química , Sitios de Unión , Secuencia Conservada/genética , Citoplasma/química , Citoplasma/genética , Citoesqueleto/química , Citoesqueleto/genética , Membrana Eritrocítica/genética , Membrana Eritrocítica/metabolismo , Eritrocitos/metabolismo , Modelos Moleculares , Fosforilación , Unión Proteica , Estructura Secundaria de Proteína
5.
PLoS One ; 11(10): e0164895, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27768734

RESUMEN

With half of the world's population at risk for malaria infection and with drug resistance on the rise, the search for mutation-resistant therapies has intensified. We report here a therapy for Plasmodium falciparum malaria that acts by inhibiting the phosphorylation of erythrocyte membrane band 3 by an erythrocyte tyrosine kinase. Because tyrosine phosphorylation of band 3 causes a destabilization of the erythrocyte membrane required for parasite egress, inhibition of the erythrocyte tyrosine kinase leads to parasite entrapment and termination of the infection. Moreover, because one of the kinase inhibitors to demonstrate antimalarial activity is imatinib, i.e. an FDA-approved drug authorized for use in children, translation of the therapy into the clinic will be facilitated. At a time when drug resistant strains of P. falciparum are emerging, a strategy that targets a host enzyme that cannot be mutated by the parasite should constitute a therapeutic mechanism that will retard evolution of resistance.


Asunto(s)
Eritrocitos/enzimología , Mesilato de Imatinib/farmacología , Parasitemia/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Animales , Mesilato de Imatinib/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA