Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
1.
Molecules ; 29(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38792062

RESUMEN

Combretastatins isolated from the Combretum caffrum tree belong to a group of closely related stilbenes. They are colchicine binding site inhibitors which disrupt the polymerization process of microtubules in tubulins, causing mitotic arrest. In vitro and in vivo studies have proven that some combretastatins exhibit antitumor properties, and among them, combretastatin A-4 is the most active mitotic inhibitor. In this study, a series of novel combretastatin A-4 analogs containing carboxylic acid, ester, and amide moieties were synthesized and their cytotoxic activity against six tumor cell lines was determined using sulforhodamine B assay. For the most cytotoxic compounds (8 and 20), further studies were performed. These compounds were shown to induce G0/G1 cell cycle arrest in MDA and A549 cells, in a concentration-dependent manner. Moreover, in vitro tubulin polymerization assays showed that both compounds are tubulin polymerization enhancers. Additionally, computational analysis of the binding modes and binding energies of the compounds with respect to the key human tubulin isotypes was performed. We have obtained a satisfactory correlation of the binding energies with the IC50 values when weighted averages of the binding energies accounting for the abundance of tubulin isotypes in specific cancer cell lines were computed.


Asunto(s)
Proliferación Celular , Diseño de Fármacos , Estilbenos , Moduladores de Tubulina , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química , Proliferación Celular/efectos de los fármacos , Moduladores de Tubulina/farmacología , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/química , Estilbenos/farmacología , Estilbenos/química , Estilbenos/síntesis química , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Células A549 , Polimerizacion/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales
2.
Int J Mol Sci ; 25(4)2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38397075

RESUMEN

We investigate Quantum Electrodynamics corresponding to the holographic brain theory introduced by Pribram to describe memory in the human brain. First, we derive a super-radiance solution in Quantum Electrodynamics with non-relativistic charged bosons (a model of molecular conformational states of water) for coherent light sources of holograms. Next, we estimate memory capacity of a brain neocortex, and adopt binary holograms to manipulate optical information. Finally, we introduce a control theory to manipulate holograms involving biological water's molecular conformational states. We show how a desired waveform in holography is achieved in a hierarchical model using numerical simulations.


Asunto(s)
Holografía , Humanos , Encéfalo , Agua
3.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38003517

RESUMEN

Fear conditioning constitutes the best and most reproducible paradigm to study the neurobiological mechanisms underlying emotions. On the other hand, studies on the synaptic plasticity phenomena underlying fear conditioning present neural circuits enforcing this learning pattern related to post-traumatic stress disorder (PTSD). Notably, in both humans and the rodent model, fear conditioning and context rely on dependent neurocircuitry in the amygdala and prefrontal cortex, cingulate gyrus, and hippocampus. In this review, an overview of the role that classical neurotransmitters play in the contextual conditioning model of fear, and therefore in PTSD, was reported.


Asunto(s)
Trastornos por Estrés Postraumático , Humanos , Trastornos por Estrés Postraumático/psicología , Miedo/psicología , Aprendizaje , Amígdala del Cerebelo , Corteza Prefrontal , Hipocampo , Transmisión Sináptica
4.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37834096

RESUMEN

One of the most important aspects of successful cancer therapy is the identification of a target protein for inhibition interaction. Conventionally, this consists of screening a panel of genes to assess which is mutated and then developing a small molecule to inhibit the interaction of two proteins or to simply inhibit a specific protein from all interactions. In previous work, we have proposed computational methods that analyze protein-protein networks using both topological approaches and thermodynamic quantification provided by Gibbs free energy. In order to make these approaches both easier to implement and free of arbitrary topological filtration criteria, in the present paper, we propose a modification of the topological-thermodynamic analysis, which focuses on the selection of the most thermodynamically stable proteins and their subnetwork interaction partners with the highest expression levels. We illustrate the implementation of the new approach with two specific cases, glioblastoma (glioma brain tumors) and chronic lymphatic leukoma (CLL), based on the publicly available patient-derived datasets. We also discuss how this can be used in clinical practice in connection with the availability of approved and investigational drugs.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Termodinámica , Proteínas , Expresión Génica , Mapas de Interacción de Proteínas , Biología Computacional/métodos
5.
Nutrients ; 15(19)2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37836529

RESUMEN

Cancer is amenable to low-cost treatments, given that it has a significant metabolic component, which can be affected through diet and lifestyle change at minimal cost. The Warburg hypothesis states that cancer cells have an altered cell metabolism towards anaerobic glycolysis. Given this metabolic reprogramming in cancer cells, it is possible to target cancers metabolically by depriving them of glucose. In addition to dietary and lifestyle modifications which work on tumors metabolically, there are a panoply of nutritional supplements and repurposed drugs associated with cancer prevention and better treatment outcomes. These interventions and their evidentiary basis are covered in the latter half of this review to guide future cancer treatment.


Asunto(s)
Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Glucólisis , Metabolismo Energético , Resultado del Tratamiento
6.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37511206

RESUMEN

Hypercoagulability and formation of extensive and difficult-to-lyse microclots are a hallmark of both acute COVID-19 and long COVID. Fibrinogen, when converted to fibrin, is responsible for clot formation, but abnormal structural and mechanical clot properties can lead to pathologic thrombosis. Recent experimental evidence suggests that the spike protein (SP) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may directly bind to the blood coagulation factor fibrinogen and induce structurally abnormal blood clots with heightened proinflammatory activity. Accordingly, in this study, we used molecular docking and molecular dynamics simulations to explore the potential activity of the antiparasitic drug ivermectin (IVM) to prevent the binding of the SARS-CoV-2 SP to fibrinogen and reduce the occurrence of microclots. Our computational results indicate that IVM may bind with high affinity to multiple sites on the fibrinogen peptide, with binding more likely in the central, E region, and in the coiled-coil region, as opposed to the globular D region. Taken together, our in silico results suggest that IVM may interfere with SP-fibrinogen binding and, potentially, decrease the formation of fibrin clots resistant to degradation. Additional in vitro studies are warranted to validate whether IVM binding to fibrinogen is sufficiently stable to prevent interaction with the SP, and potentially reduce its thrombo-inflammatory effect in vivo.


Asunto(s)
COVID-19 , Fibrinógeno , Ivermectina , Trombosis , Humanos , Fibrina/metabolismo , Fibrinógeno/metabolismo , Hemostáticos , Ivermectina/farmacología , Ivermectina/uso terapéutico , Simulación del Acoplamiento Molecular , Síndrome Post Agudo de COVID-19 , SARS-CoV-2/metabolismo , Trombosis/metabolismo
8.
J Phys Chem Lett ; 14(25): 5891-5900, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37343127

RESUMEN

Microtubules and actin filaments are protein polymers that play a variety of energy conversion roles in the biological cell. While these polymers are being increasingly harnessed for mechanochemical roles both inside and outside physiological conditions, their capabilities for photonic energy conversion are not well understood. In this Perspective, we first introduce the reader to the photophysical properties of protein polymers, examining light harvesting by their constituent aromatic residues. We then discuss both the opportunities and the challenges in interfacing protein biochemistry with photophysics. We also review the literature reporting the response of microtubules and actin filaments to infrared light, illustrating the potential of these polymers to these polymers serve as targets for photobiomodulation. Finally, we present broad challenges and questions in the field of protein biophotonics. Understanding how protein polymers interact with light will pioneer both biohybrid device fabrication and light-based therapeutics.


Asunto(s)
Microtúbulos , Polímeros , Polímeros/química , Microtúbulos/metabolismo , Fotones , Fenómenos Físicos
9.
Cancer Med ; 12(11): 12402-12412, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37184216

RESUMEN

BACKGROUND: Patients with advanced hepatocellular carcinoma (HCC) and poor liver function lack effective systemic therapies. Low-energy electromagnetic fields (EMFs) can influence cell biological processes via non-thermal effects and may represent a new treatment option. METHODS: This single-site feasibility trial enrolled patients with advanced HCC, Child-Pugh A and B, Eastern Cooperative Oncology Group 0-2. Patients underwent 90-min amplitude-modulated EMF exposure procedures every 2-4 weeks, using the AutEMdev (Autem Therapeutics). Patients could also receive standard care. The primary endpoints were safety and the identification of hemodynamic variability patterns. Exploratory endpoints included health-related quality of life (HRQoL), overall survival (OS). and objective response rate (ORR) using RECIST v1.1. RESULTS: Sixty-six patients with advanced HCC received 539 AutEMdev procedures (median follow-up, 30 months). No serious adverse events occurred during procedures. Self-limiting grade 1 somnolence occurred in 78.7% of patients. Hemodynamic variability during EMF exposure was associated with specific amplitude-modulation frequencies. HRQoL was maintained or improved among patients remaining on treatment. Median OS was 11.3 months (95% confidence interval [CI]: 6.0, 16.6) overall (16.0 months [95% CI: 4.4, 27.6] and 12.0 months [6.4, 17.6] for combination therapy and monotherapy, respectively). ORR was 24.3% (32% and 17% for combination therapy and monotherapy, respectively). CONCLUSION: AutEMdev EMF exposure has an excellent safety profile in patients with advanced HCC. Hemodynamic alterations at personalized frequencies may represent a surrogate of anti-tumor efficacy. NCT01686412.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patología , Campos Electromagnéticos , Estudios de Factibilidad , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patología , Calidad de Vida
11.
J Funct Biomater ; 14(3)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36976059

RESUMEN

Microtubules are cylindrical protein polymers assembled in the cytoplasm of all eukaryotic cells by polymerization of aß tubulin dimers, which are involved in cell division, migration, signaling, and intracellular traffic. These functions make them essential in the proliferation of cancerous cells and metastases. Tubulin has been the molecular target of many anticancer drugs because of its crucial role in the cell proliferation process. By developing drug resistance, tumor cells severely limit the successful outcomes of cancer chemotherapy. Hence, overcoming drug resistance motivates the design of new anticancer therapeutics. Here, we retrieve short peptides obtained from the data repository of antimicrobial peptides (DRAMP) and report on the computational screening of their predicted tertiary structures for the ability to inhibit tubulin polymerization using multiple combinatorial docking programs, namely PATCHDOCK, FIREDOCK, and ClusPro. The interaction visualizations show that all the best peptides from the docking analysis bind to the interface residues of the tubulin isoforms αßl, αßll, αßlll, and αßlV, respectively. The docking studies were further confirmed by a molecular dynamics simulation, in which the computed root-mean-square deviation (RMSD), and root-mean-square fluctuation (RMSF), verified the stable nature of the peptide-tubulin complexes. Physiochemical toxicity and allergenicity studies were also performed. This present study suggests that these identified anticancer peptide molecules might destabilize the tubulin polymerization process and hence can be suitable candidates for novel drug development. It is concluded that wet-lab experiments are needed to validate these findings.

12.
ACS Cent Sci ; 9(3): 352-361, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36968538

RESUMEN

The repeating arrangement of tubulin dimers confers great mechanical strength to microtubules, which are used as scaffolds for intracellular macromolecular transport in cells and exploited in biohybrid devices. The crystalline order in a microtubule, with lattice constants short enough to allow energy transfer between amino acid chromophores, is similar to synthetic structures designed for light harvesting. After photoexcitation, can these amino acid chromophores transfer excitation energy along the microtubule like a natural or artificial light-harvesting system? Here, we use tryptophan autofluorescence lifetimes to probe energy hopping between aromatic residues in tubulin and microtubules. By studying how the quencher concentration alters tryptophan autofluorescence lifetimes, we demonstrate that electronic energy can diffuse over 6.6 nm in microtubules. We discover that while diffusion lengths are influenced by tubulin polymerization state (free tubulin versus tubulin in the microtubule lattice), they are not significantly altered by the average number of protofilaments (13 versus 14). We also demonstrate that the presence of the anesthetics etomidate and isoflurane reduce exciton diffusion. Energy transport as explained by conventional Förster theory (accommodating for interactions between tryptophan and tyrosine residues) does not sufficiently explain our observations. Our studies indicate that microtubules are, unexpectedly, effective light harvesters.

13.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36835426

RESUMEN

Over the past two decades, it was discovered that introducing synthetic small interfering RNAs (siRNAs) into the cytoplasm facilitates effective gene-targeted silencing. This compromises gene expression and regulation by repressing transcription or stimulating sequence-specific RNA degradation. Substantial investments in developing RNA therapeutics for disease prevention and treatment have been made. We discuss the application to proprotein convertase subtilisin/kexin type 9 (PCSK9), which binds to and degrades the low-density lipoprotein cholesterol (LDL-C) receptor, interrupting the process of LDL-C uptake into hepatocytes. PCSK9 loss-of-function modifications show significant clinical importance by causing dominant hypocholesterolemia and lessening the risk of cardiovascular disease (CVD). Monoclonal antibodies and small interfering RNA (siRNA) drugs targeting PCSK9 are a significant new option for managing lipid disorders and improving CVD outcomes. In general, monoclonal antibodies are restricted to binding with cell surface receptors or circulating proteins. Similarly, overcoming the intracellular and extracellular defenses that prevent exogenous RNA from entering cells must be achieved for the clinical application of siRNAs. N-acetylgalactosamine (GalNAc) conjugates are a simple solution to the siRNA delivery problem that is especially suitable for treating a broad spectrum of diseases involving liver-expressed genes. Inclisiran is a GalNAc-conjugated siRNA molecule that inhibits the translation of PCSK9. The administration is only required every 3 to 6 months, which is a significant improvement over monoclonal antibodies for PCSK9. This review provides an overview of siRNA therapeutics with a focus on detailed profiles of inclisiran, mainly its delivery strategies. We discuss the mechanisms of action, its status in clinical trials, and its prospects.


Asunto(s)
Anticolesterolemiantes , Enfermedades Cardiovasculares , Hipercolesterolemia , ARN Interferente Pequeño , Humanos , Anticuerpos Monoclonales/uso terapéutico , Anticolesterolemiantes/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , LDL-Colesterol , Hipercolesterolemia/metabolismo , Hipercolesterolemia/terapia , Proproteína Convertasa 9/genética , ARN Interferente Pequeño/uso terapéutico
14.
Tumori ; 109(4): 370-378, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36645143

RESUMEN

PURPOSE: Neuroblastoma is a pediatric solid tumor with a prognosis associated with histology and age of the patient, which are the parameters of the well-established current classification (Shimada classification). Despite the development of new treatment options, the prognosis of high-risk neuroblastoma patients is still poor. Therefore, there is a continuous need to stratify the children suffering from this tumor. A mathematical and computational approach is proposed to enable automatic and precise cancer diagnosis on the histological slide. METHODS: We targeted the complexity of neuroblastoma by calculating its image entropy (S), fractal dimension (FD), and lacunarity (λ) in a combined mathematical code. First, we tested the proposed method for patient-derived glioma images. It allowed distinguishing between normal brain tissue, grade II, and grade III glioma, which harbor different outcomes. RESULTS: In neuroblastoma, our analysis of image's FD, S, and λ combined with a machine learning algorithm automatically predicted tumor malignancy with a receiver operating characteristic curve of 0.82. FD, S, and λ distinguish between neuroblastoma and ganglioneuroma, but they only partially differentiate between the normal samples and the other classes. Ganglioneuroma, the most differentiated form, and poorly-differentiated neuroblastoma display different values of FD, S, and λ. CONCLUSIONS: FD, S, and λ of imaging recognize groups in neuroblastic tumors. We suggest that future studies including these features may challenge the current Shimada classification of neuroblastoma with categories of favorable and unfavorable histology. It is expected that this methodology could trigger multicenter studies and potentially find practical use in the clinical setting of children's hospitals worldwide.


Asunto(s)
Ganglioneuroma , Glioma , Neuroblastoma , Niño , Humanos , Ganglioneuroma/patología , Fractales , Entropía , Neuroblastoma/diagnóstico por imagen , Neuroblastoma/patología , Glioma/patología
15.
Drug Discov Today ; 28(1): 103443, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36396117

RESUMEN

The time taken and the cost of producing novel therapeutic drugs presents a significant burden - a typical target-based drug discovery process involves computational screening of drug libraries, compound assays and expensive clinical trials. This review summarises the value of dynamic conformational information obtained by optical tweezers and how this information can target 'undruggable' proteins. Optical tweezers provide insights into the link between biological mechanisms and structural conformations, which can be used in drug discovery. Developing workflows including software and sample preparation will improve throughput, enabling adoption of optical tweezers in biopharma. As a complementary tool, optical tweezers increase the number of drug candidates, improve the understanding of a target's complex structural dynamics and elucidate interactions between compounds and their targets.


Asunto(s)
Pinzas Ópticas , Proteínas , Proteínas/metabolismo , Descubrimiento de Drogas , Conformación Molecular
16.
Front Neurosci ; 17: 1302519, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38161798

RESUMEN

Due to the stimulation of neuronal membrane dipoles by action potentials, under suitable conditions coherent dipole oscillations can be formed. We argue that these dipole oscillations satisfy the weak Bose-Einstein condensate criteria of the Froehlich model of biological coherence. They can subsequently generate electromagnetic fields (EMFs) propagating in the inter-neuronal space. When neighboring neurons fire synchronously, EMFs can create interference patterns and hence form holographic images containing analog information about the sensory inputs that trigger neuronal activity. The mirror pattern projected by EMFs inside the neuron can encode information in the neuronal cytoskeleton. We outline an experimental verification of our hypothesis and its consequences for anesthesia, neurodegenerative diseases, and psychiatric states.

17.
Phys Life Rev ; 43: 139-188, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36265200

RESUMEN

In recent decades, medical research has been primarily focused on the inherited aspect of cancers, despite the reality that only 5-10% of tumours discovered are derived from genetic causes. Cancer is a broad term, and therefore it is inaccurate to address it as a purely genetic disease. Understanding cancer cells' behaviour is the first step in countering them. Behind the scenes, there is a complicated network of environmental factors, DNA errors, metabolic shifts, and electrostatic alterations that build over time and lead to the illness's development. This latter aspect has been analyzed in previous studies, but how the different electrical changes integrate and affect each other is rarely examined. Every cell in the human body possesses electrical properties that are essential for proper behaviour both within and outside of the cell itself. It is not yet clear whether these changes correlate with cell mutation in cancer cells, or only with their subsequent development. Either way, these aspects merit further investigation, especially with regards to their causes and consequences. Trying to block changes at various levels of occurrence or assisting in their prevention could be the key to stopping cells from becoming cancerous. Therefore, a comprehensive understanding of the current knowledge regarding the electrical landscape of cells is much needed. We review four essential electrical characteristics of cells, providing a deep understanding of the electrostatic changes in cancer cells compared to their normal counterparts. In particular, we provide an overview of intracellular and extracellular pH modifications, differences in ionic concentrations in the cytoplasm, transmembrane potential variations, and changes within mitochondria. New therapies targeting or exploiting the electrical properties of cells are developed and tested every year, such as pH-dependent carriers and tumour-treating fields. A brief section regarding the state-of-the-art of these therapies can be found at the end of this review. Finally, we highlight how these alterations integrate and potentially yield indications of cells' malignancy or metastatic index.


Asunto(s)
Neoplasias , Humanos , Potenciales de la Membrana , Mitocondrias
18.
Cells ; 11(17)2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36078119

RESUMEN

The effects of electric fields (EFs) on various cell types have been thoroughly studied, and exhibit a well-known regulatory effect on cell processes, implicating their usage in several medical applications. While the specific effect exerted on cells is highly parameter-dependent, the majority of past research has focused primarily on low-frequency alternating fields (<1 kHz) and high-frequency fields (in the order of MHz). However, in recent years, low-intensity (1-3 V/cm) alternating EFs with intermediate frequencies (100-500 kHz) have been of topical interest as clinical treatments for cancerous tumours through their disruption of cell division and the mitotic spindle, which can lead to cell death. These aptly named tumour-treating fields (TTFields) have been approved by the FDA as a treatment modality for several cancers, such as malignant pleural mesothelioma and glioblastoma multiforme, demonstrating remarkable efficacy and a high safety profile. In this work, we report the results of in vitro experiments with HeLa and MCF-10A cells exposed to TTFields for 18 h, imaged in real time using live-cell imaging. Both studied cell lines were exposed to 100 kHz TTFields with a 1-1 duty cycle, which resulted in significant mitotic and cytokinetic arrest. In the experiments with HeLa cells, the effects of the TTFields' frequency (100 kHz vs. 200 kHz) and duty cycle (1-1 vs. 1-0) were also investigated. Notably, the anti-mitotic effect was stronger in the HeLa cells treated with 100 kHz TTFields. Additionally, it was found that single and two-directional TTFields (oriented orthogonally) exhibit a similar inhibitory effect on HeLa cell division. These results provide real-time evidence of the profound ability of TTFields to hinder the process of cell division by significantly delaying both the mitosis and cytokinesis phases of the cell cycle.


Asunto(s)
Glioblastoma , Mesotelioma Maligno , Glioblastoma/terapia , Células HeLa , Humanos , Mitosis , Huso Acromático
19.
Front Med Technol ; 4: 869155, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36157082

RESUMEN

Exposure to Low-Energy Amplitude-Modulated Radiofrequency Electromagnetic Fields (LEAMRFEMF) represents a new treatment option for patients with advanced hepatocellular carcinoma (AHCC). We focus on two medical devices that modulate the amplitude of a 27.12 MHz carrier wave to generate envelope waves in the low Hz to kHz range. Each provides systemic exposure to LEAMRFEMF via an intrabuccal antenna. This technology differs from so-called Tumour Treating Fields because it uses different frequency ranges, uses electromagnetic rather than electric fields, and delivers energy systemically rather than locally. The AutemDev also deploys patient-specific frequencies. LEAMRFEMF devices use 100-fold less power than mobile phones and have no thermal effects on tissue. Tumour type-specific or patient-specific treatment frequencies can be derived by measuring haemodynamic changes induced by exposure to LEAMRFEMF. These specific frequencies inhibited growth of human cancer cell lines in vitro and in mouse xenograft models. In uncontrolled prospective clinical trials in patients with AHCC, minorities of patients experienced complete or partial tumour responses. Pooled comparisons showed enhanced overall survival in treated patients compared to historical controls. Mild transient somnolence was the only notable treatment-related adverse event. We hypothesize that intracellular oscillations of charged macromolecules and ion flows couple resonantly with LEAMRFEMF. This resonant coupling appears to disrupt cell division and subcellular trafficking of mitochondria. We provide an estimate of the contribution of the electromagnetic effects to the overall energy balance of an exposed cell by calculating the power delivered to the cell, and the energy dissipated through the cell due to EMF induction of ionic flows along microtubules. We then compare this with total cellular metabolic energy production and conclude that energy delivered by LEAMRFEMF may provide a beneficial shift in cancer cell metabolism away from aberrant glycolysis. Further clinical research may confirm that LEAMRFEMF has therapeutic value in AHCC.

20.
Int J Mol Sci ; 23(15)2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35897691

RESUMEN

Heterocyclic compounds are a class of compounds of natural origin with favorable properties and hence have major pharmaceutical significance. They have an exceptional adroitness favoring their use as diverse smart biomimetics, in addition to possessing an active pharmacophore in a complex structure. This has made them an indispensable motif in the drug discovery field. Heterocyclic compounds are usually classified according to the ring size, type, and the number of heteroatoms present in the ring. Among different heterocyclic ring systems, nitrogen heterocyclic compounds are more abundant in nature. They also have considerable pharmacological significance. This review highlights recent pioneering studies in the biological assessment of nitrogen-containing compounds, namely: triazoles, tetrazoles, imidazole/benzimidazoles, pyrimidines, and quinolines. It explores publications between April 2020 and February 2022 and will benefit researchers in medicinal chemistry and pharmacology. The present work is organized based on the size of the heterocyclic ring.


Asunto(s)
Química Farmacéutica , Compuestos Heterocíclicos , Descubrimiento de Drogas , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Nitrógeno , Triazoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...