Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-33365225

RESUMEN

The anisotropy of hexagonal boron nitride (hBN) gives rise to hyperbolic phonon-polaritons (HPhPs), notable for their volumetric frequency-dependent propagation and strong confinement. For frustum (truncated nanocone) structures, theory predicts five, high-order HPhPs, sets, but only one set was observed previously with far-field reflectance and scattering-type scanning near-field optical microscopy. In contrast, the photothermal induced resonance (PTIR) technique has recently permitted sampling of the full HPhP dispersion and observing such elusive predicted modes; however, the mechanism underlying PTIR sensitivity to these weakly-scattering modes, while critical to their understanding, has not yet been clarified. Here, by comparing conventional contact- and newly developed tapping-mode PTIR, we show that the PTIR sensitivity to those weakly-scattering, high-Q (up to ≈280) modes is, contrary to a previous hypothesis, unrelated to the probe operation (contact or tapping) and is instead linked to PTIR ability to detect tip-launched dark, volumetrically-confined polaritons, rather than nanostructure-launched HPhPs modes observed by other techniques. Furthermore, we show that in contrast with plasmons and surface phonon-polaritons, whose Q-factors and optical cross-sections are typically degraded by the proximity of other nanostructures, the high-Q HPhP resonances are preserved even in high-density hBN frustum arrays, which is useful in sensing and quantum emission applications.

2.
Analyst ; 143(16): 3808-3813, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-29878001

RESUMEN

Paclitaxel is a powerful drug against restenosis and many forms of cancer. However, its clinical application hinges on the ability to achieve suitable stabilized drug concentrations in an aqueous suspension while hindering drug crystallization. To engineer such formulations, it is imperative to understand paclitaxel's partitioning and crystallization within the carrier matrix. Lipid-polymer hybrid films have been recently shown to accommodate large paclitaxel loads and suppress crystallization. Additionally, such hybrid materials promote synergistic drug release compared to the pure constituents. Here, we leverage the composition sensitive photo-thermal induced resonance (PTIR) technique to study paclitaxel partitioning within hybrid films at the nanoscale. PTIR data reveal that paclitaxel nano-crystals segregate from lipid-only films but are well dispersed in polymer-only films. Remarkably, lipid-polymer hybrid films show enhanced partitioning of paclitaxel at the lipid-polymer phase boundaries, but still stifle crystallization, thus paving the way towards compositional and microstructural engineering of small-drug delivery systems.


Asunto(s)
Sistemas de Liberación de Medicamentos , Lípidos/química , Paclitaxel/química , Polímeros/química , Cristalización
3.
Artículo en Inglés | MEDLINE | ID: mdl-31080383

RESUMEN

Amphiphilic in nature, lipids spontaneously self-assemble into a range of nanostructures in the presence of water. Among lipid self-assembled structures, liposomes and supported lipid bilayers have long held scientific interest for their main applications in drug delivery and plasma membrane models, respectively. In contrast, lipid-based multi-layered membranes on solid supports only recently begun drawing scientists' attention. New studies on lipid films show that the stacking of multiple bilayers on a solid support yields interestingly complex features to these systems. Namely, multiple layers exhibit cooperative structural and dynamic behavior. In addition, the materials enable compartmentalization, templating, and enhanced release of several molecules of interest. Importantly, supported lipid phases exhibit long-range periodic nano-scale order and orientation that is tunable in response to a changing environment. Herein, we summarize current and pertinent understanding of lipid-based film research focusing on how unique structural characteristics enable the emergence of new applications in biotechnology including label-free biosensors, macroscale drug delivery, and substrate-mediated gene delivery. Our very recent contributions to lipid-based films, focusing on the structural characterization at the meso, nano, and molecular-scale, using Small-Angle X-ray Scattering, Atomic Force Microscopy, Photothermal Induced Resonance, and Solid-State NMR will be also highlighted.

4.
J Phys Chem Lett ; 7(24): 4962-4967, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27973863

RESUMEN

The rear surfaces of CdTe photovoltaic devices without back contacts, grown by close-spaced sublimation (CSS), were analyzed using conductive atomic force microscopy (C-AFM). As-deposited and CdCl2-treated CdTe samples were compared to clarify the effect of the treatment on charge flow through grains and grain boundaries. The CdCl2-treated samples exhibit a more homogeneous and enhanced current flow across the grains as compared to the as-deposited samples. The grain boundaries show variable current. Under high bias, grain boundaries dominate current flow when the main junction is reverse biased and with the conducting current in reverse breakdown. Under the opposite bias conditions, where the contact of the conductive tip to the surface is reverse biased and under breakdown conditions, the current flow is uniform with little contrast between grains and grain boundaries. The results are interpreted as resulting from the improved crystallinity of the CdTe with reduced p-type doping along the grain boundaries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...