Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Luminescence ; 39(9): e4881, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39192818

RESUMEN

The present paper reported on the analysis of structural defects and their influence on the red-emitting γ-Al2O3:Mn4+,Mg2+ nanowires using positron annihilation spectroscopy (PAS). The nanowires were synthesized by hydrothermal method and low-temperature post-treatment using glucose as a reducing agent. X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), and photoluminescence excitation (PLE) were utilized, respectively, for determining the structural phase, morphology and red-emitting intensity in studied samples. Three PAS experiments, namely, positron annihilation lifetime (PAL), Doppler broadening (DB), and electron momentum distribution (EMD), were simultaneously performed to investigate the formations of structural defects in synthesized materials. Obtained results indicated that the doping concentration of 0.06% was optimal for the substitution of Mn4+ and Mg2+ to two Al3+ sites and the formation of oxygen vacancy (VO)-rich vacancy clusters (2VAl + 3VO) and large voids (~0.7 nm) with less Al atoms. Those characteristics reduced the energy transfer between Mn4+ ions, thus consequently enhanced the PL and PLE intensities. Moreover, this optimal doping concentration also effectively controlled the size of nanopores (~2.18 nm); hence, it is expected to maintain the high thermal conductivity of γ-Al2O3 nanowire-phosphor. The present study, therefore, demonstrated a potential application of γ-Al2O3 nanowire-phosphor in fabricating the high-performance optoelectronic devices.


Asunto(s)
Óxido de Aluminio , Magnesio , Manganeso , Nanocables , Óxido de Aluminio/química , Cationes/química , Manganeso/química , Magnesio/química , Electrones , Espectrofotometría , Difracción de Rayos X , Nanocables/química , Nanocables/ultraestructura , Microscopía Electrónica de Rastreo
2.
Small Methods ; : e2400797, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082067

RESUMEN

Hydrogen peroxide (H2O2) production via oxygen (O2) reduction reaction (ORR) in pure water (H2O) through graphitic carbon nitrides (g-C3N4)-based piezo-photocatalysts is an exciting approach in many current studies. However, the low Lewis-acid properties of g-C3N4 limited the catalytic performance because of the low O2 adsorption efficacy. To overcome this challenge, the interaction of g-C3N4 precursors with various solvents are utilized to synthesize g-C3N4, possessing multiple nitrogen-vacant species via thermal shocking polymerization. These results suggest that the lack of nitrogen in g-C3N4 and the incident introduction of oxygen-functional groups enhance the Lewis acid-base interactions and polarize the g-C3N4 lattices, leading to the enormous enhancement. Furthermore, the catalytic mechanisms are thoroughly studied, with the formation of H2O2 proceeding via radical and water oxidation pathways, in which the roles of light and ultrasound are carefully investigated. Thus, these findings not only reinforce the potential view of metal-free photocatalysts, accelerating the understanding of g-C3N4 working principles to generate H2O2 based on the oxygen reduction and water oxidation reactions, but also propose a facile one-step way for fabricating highly efficient and scalable photocatalysts to produce H2O2 without using sacrificial agents, pushing the practical application of in situ solar H2O2 toward real-world scenarios.

3.
Opt Express ; 28(18): 26189-26199, 2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32906895

RESUMEN

In this study, a novel nanostructure of fluoride red emitting phosphor is synthesized via soft templates. K2SiF6:Mn4+ nanocrystals in the range of 3-5 nm diameter are found inside the porous K2SiF6:Mn4+ nanoparticle hosts, forming unique dots-in-nanoparticles (d-NPs) structures with controlled optical properties. The porous K2SiF6:Mn4+ d-NPs exhibit a sharp and deep red emission with an excellent quantum yield of ∼95.9%, and ultra-high color purity with the corresponding x and y in the CIE chromaticity coordinates are 0.7102 and 0.2870, respectively. Moreover, this nanophosphor possesses good thermal stability in range of 300 K-500 K, under light excitation of 455 nm. The K2SiF6:Mn4+ d-NPs are covered onto a surface of 100×100 µm2 blue-yellow InxGa1-xN nanowire light-emitting diode (LED) to make warm white LEDs (WLEDs). The fabricated WLEDs present an excellent color rendering index of ∼95.4 and a low correlated color temperature of ∼3649 K. Porous K2SiF6:Mn4+ d-NPs are suggested as a potential red component for high color quality micro WLED applications.

4.
Appl Radiat Isot ; 67(1): 164-9, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18789712

RESUMEN

A technique using two measurements from opposing directions for the assay of the activity of radioactive waste drums, mainly consisting of organic materials, has been studied. A model for the calculation of systematic errors is given by simulating the measurement system. The calculated values are in good agreement with the experimental values. This confirms the validity of the model and proofs the good performance of this technique in practice. These results may provide guidelines for setting up a measuring system for the assay the radwaste drums.


Asunto(s)
Residuos Radiactivos/análisis , Espectrometría gamma/métodos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA