Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 134(8)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38618958

RESUMEN

Merkel cell carcinoma (MCC) is a highly immunogenic skin cancer primarily induced by Merkel cell polyomavirus, which is driven by the expression of the oncogenic T antigens (T-Ags). Blockade of the programmed cell death protein-1 (PD-1) pathway has shown remarkable response rates, but evidence for therapy-associated T-Ag-specific immune response and therapeutic strategies for the nonresponding fraction are both limited. We tracked T-Ag-reactive CD8+ T cells in peripheral blood of 26 MCC patients under anti-PD1 therapy, using DNA-barcoded pMHC multimers, displaying all peptides from the predicted HLA ligandome of the oncoproteins, covering 33 class I haplotypes. We observed a broad T cell recognition of T-Ags, including identification of 20 T-Ag-derived epitopes we believe to be novel. Broadening of the T-Ag recognition profile and increased T cell frequencies during therapy were strongly associated with clinical response and prolonged progression-free survival. T-Ag-specific T cells could be further boosted and expanded directly from peripheral blood using artificial antigen-presenting scaffolds, even in patients with no detectable T-Ag-specific T cells. These T cells provided strong tumor-rejection capacity while retaining a favorable phenotype for adoptive cell transfer. These findings demonstrate that T-Ag-specific T cells are associated with the clinical outcome to PD-1 blockade and that Ag-presenting scaffolds can be used to boost such responses.


Asunto(s)
Carcinoma de Células de Merkel , Neoplasias Cutáneas , Humanos , Antígenos Virales de Tumores , Carcinoma de Células de Merkel/tratamiento farmacológico , Carcinoma de Células de Merkel/genética , Receptor de Muerte Celular Programada 1/genética , Linfocitos T CD8-positivos , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética
2.
Front Immunol ; 15: 1360281, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633261

RESUMEN

Background: Mutation-derived neoantigens are critical targets for tumor rejection in cancer immunotherapy, and better tools for neoepitope identification and prediction are needed to improve neoepitope targeting strategies. Computational tools have enabled the identification of patient-specific neoantigen candidates from sequencing data, but limited data availability has hindered their capacity to predict which of the many neoepitopes will most likely give rise to T cell recognition. Method: To address this, we make use of experimentally validated T cell recognition towards 17,500 neoepitope candidates, with 467 being T cell recognized, across 70 cancer patients undergoing immunotherapy. Results: We evaluated 27 neoepitope characteristics, and created a random forest model, IMPROVE, to predict neoepitope immunogenicity. The presence of hydrophobic and aromatic residues in the peptide binding core were the most important features for predicting neoepitope immunogenicity. Conclusion: Overall, IMPROVE was found to significantly advance the identification of neoepitopes compared to other current methods.


Asunto(s)
Neoplasias , Linfocitos T , Humanos , Inmunoterapia/métodos
3.
J Exp Clin Cancer Res ; 43(1): 87, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509571

RESUMEN

BACKGROUND: We have recently shown extensive sequence and conformational homology between tumor-associated antigens (TAAs) and antigens derived from microorganisms (MoAs). The present study aimed to assess the breadth of T-cell recognition specific to MoAs and the corresponding TAAs in healthy subjects (HS) and patients with cancer (CP). METHOD: A library of > 100 peptide-MHC (pMHC) combinations was used to generate DNA-barcode labelled multimers. Homologous peptides were selected from the Cancer Antigenic Peptide Database, as well as Bacteroidetes/Firmicutes-derived peptides. They were incubated with CD8 + T cells from the peripheral blood of HLA-A*02:01 healthy individuals (n = 10) and cancer patients (n = 16). T cell recognition was identified using tetramer-staining analysis. Cytotoxicity assay was performed using as target cells TAP-deficient T2 cells loaded with MoA or the paired TuA. RESULTS: A total of 66 unique pMHC recognized by CD8+ T cells across all groups were identified. Of these, 21 epitopes from microbiota were identified as novel immunological targets. Reactivity against selected TAAs was observed for both HS and CP. pMHC tetramer staining confirmed CD8+ T cell populations cross-reacting with CTA SSX2 and paired microbiota epitopes. Moreover, PBMCs activated with the MoA where shown to release IFNγ as well as to exert cytotoxic activity against cells presenting the paired TuA. CONCLUSIONS: Several predicted microbiota-derived MoAs are recognized by T cells in HS and CP. Reactivity against TAAs was observed also in HS, primed by the homologous bacterial antigens. CD8+ T cells cross-reacting with MAGE-A1 and paired microbiota epitopes were identified in three subjects. Therefore, the microbiota can elicit an extensive repertoire of natural memory T cells to TAAs, possibly able to control tumor growth ("natural anti-cancer vaccination"). In addition, non-self MoAs can be included in preventive/therapeutic off-the-shelf cancer vaccines with more potent anti-tumor efficacy than those based on TAAs.


Asunto(s)
Epítopos de Linfocito T , Neoplasias , Humanos , Linfocitos T CD8-positivos , Antígenos de Neoplasias , Péptidos/química
4.
J Immunother Cancer ; 11(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37586765

RESUMEN

BACKGROUND: Adoptive cell therapy (ACT) has shown promising results for the treatment of cancer and viral infections. Successful ACT relies on ex vivo expansion of large numbers of desired T-cells with strong cytotoxic capacity and in vivo persistence, which constitutes the greatest challenge to current ACT strategies. Here, in this study, we present a novel technology for ex vivo expansion of antigen-specific T-cells; artificial antigen-presenting scaffolds (Ag-scaffolds) consisting of a dextran-polysaccharide backbone, decorated with combinations of peptide-Major Histocompatibility Complex (pMHC), cytokines and co-stimulatory molecules, enabling coordinated stimulation of antigen-specific T-cells. METHODS: The capacity of Ag-scaffolds to expand antigen-specific T-cells was explored in ex vivo cultures with peripheral blood mononuclear cells from healthy donors and patients with metastatic melanoma. The resulting T-cell products were assessed for phenotypic and functional characteristics. RESULTS: We identified an optimal Ag-scaffold for expansion of T-cells for ACT, carrying pMHC and interleukin-2 (IL-2) and IL-21, with which we efficiently expanded both virus-specific and tumor-specific CD8+ T cells from peripheral blood of healthy donors and patients, respectively. The resulting T-cell products were characterized by a high frequency of antigen-specific cells with high self-renewal capacity, low exhaustion, a multifunctional cytokine profile upon antigen-challenge and superior tumor killing capacity. This demonstrates that the coordinated stimuli provided by an optimized stoichiometry of TCR engaging (pMHC) and stimulatory (cytokine) moieties is essential to obtain desired T-cell characteristics. To generate an 'off-the-shelf' multitargeting Ag-scaffold product of relevance to patients with metastatic melanoma, we identified the 30 most frequently recognized shared HLA-A0201-restricted melanoma epitopes in a cohort of 87 patients. By combining these in an Ag-scaffold product, we were able to expand tumor-specific T-cells from 60-70% of patients with melanoma, yielding a multitargeted T-cell product with up to 25% specific and phenotypically and functionally improved T cells. CONCLUSIONS: Taken together, the Ag-scaffold represents a promising new technology for selective expansion of antigen-specific CD8+ T cells directly from blood, yielding a highly specific and functionally enhanced T-cell product for ACT.


Asunto(s)
Melanoma , Neoplasias Primarias Secundarias , Humanos , Inmunoterapia Adoptiva , Leucocitos Mononucleares , Melanoma/terapia , Citocinas , Receptores de Antígenos de Linfocitos T
5.
Leuk Lymphoma ; 64(8): 1451-1457, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37293759

RESUMEN

Proton Pump inhibitors (PPIs) are frequently prescribed to cancer patients to prevent gastric mucosal damage. Post-diagnostic PPI use in patients with solid tumors may be associated with increased cancer mortality. However, the hazardous impact of PPIs in patients with hematologic malignancies remains unknown. This association was investigated in a large, retrospective cohort study using data from the Danish nationwide health registries. The outcomes were cancer-specific or non-cancer deaths. We identified 15,320 patients with hematologic malignancies and of these 1811 were identified as post-diagnostic PPI users. PPI users had significantly increased HRs for cancer-specific mortality (HR 1.31; 95% CI, 1.18-1.44) and 1-year cancer-specific mortality (HR 1.50, 95% CI 1.29-1.74) as compared to nonusers. The association between PPI use and increased cancer-specific mortality in Danish patients with hematologic malignancies supports the raised concerns regarding the frequent use of PPIs in cancer patients.


Asunto(s)
Neoplasias Hematológicas , Neoplasias , Humanos , Inhibidores de la Bomba de Protones/efectos adversos , Estudios de Cohortes , Estudios Retrospectivos , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/epidemiología , Factores de Riesgo
6.
Front Immunol ; 13: 906352, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874702

RESUMEN

Immune checkpoint blockade (ICB) is standard-of-care for patients with metastatic melanoma. It may re-invigorate T cells recognizing tumors, and several tumor antigens have been identified as potential targets. However, little is known about the dynamics of tumor antigen-specific T cells in the circulation, which might provide valuable information on ICB responses in a minimally invasive manner. Here, we investigated individual signatures composed of up to 167 different melanoma-associated epitope (MAE)-specific CD8+ T cells in the blood of stage IV melanoma patients before and during anti-PD-1 treatment, using a peptide-loaded multimer-based high-throughput approach. Additionally, checkpoint receptor expression patterns on T cell subsets and frequencies of myeloid-derived suppressor cells and regulatory T cells were quantified by flow cytometry. Regression analysis using the MAE-specific CD8+ T cell populations was applied to identify those that correlated with overall survival (OS). The abundance of MAE-specific CD8+ T cell populations, as well as their dynamics under therapy, varied between patients. Those with a dominant increase of these T cell populations during PD-1 ICB had a longer OS and progression-free survival than those with decreasing or balanced signatures. Patients with a dominantly increased MAE-specific CD8+ T cell signature also exhibited an increase in TIM-3+ and LAG-3+ T cells. From these results, we created a model predicting improved/reduced OS by combining data on dynamics of the three most informative MAE-specific CD8+ T cell populations. Our results provide insights into the dynamics of circulating MAE-specific CD8+ T cell populations during ICB, and should contribute to a better understanding of biomarkers of response and anti-cancer mechanisms.


Asunto(s)
Melanoma , Receptor de Muerte Celular Programada 1 , Antígenos de Neoplasias , Linfocitos T CD8-positivos , Epítopos/metabolismo , Humanos , Melanoma/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/metabolismo , Subgrupos de Linfocitos T
7.
J Clin Invest ; 132(2)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34813506

RESUMEN

BACKGROUNDNeoantigen-driven recognition and T cell-mediated killing contribute to tumor clearance following adoptive cell therapy (ACT) with tumor-infiltrating lymphocytes (TILs). Yet how diversity, frequency, and persistence of expanded neoepitope-specific CD8+ T cells derived from TIL infusion products affect patient outcome is not fully determined.METHODSUsing barcoded pMHC multimers, we provide a comprehensive mapping of CD8+ T cells recognizing neoepitopes in TIL infusion products and blood samples from 26 metastatic melanoma patients who received ACT.RESULTSWe identified 106 neoepitopes within TIL infusion products corresponding to 1.8% of all predicted neoepitopes. We observed neoepitope-specific recognition to be virtually devoid in TIL infusion products given to patients with progressive disease outcome. Moreover, we found that the frequency of neoepitope-specific CD8+ T cells in TIL infusion products correlated with increased survival and that neoepitope-specific CD8+ T cells shared with the infusion product in posttreatment blood samples were unique to responders of TIL-ACT. Finally, we found that a transcriptional signature for lymphocyte activity within the tumor microenvironment was associated with a higher frequency of neoepitope-specific CD8+ T cells in the infusion product.CONCLUSIONSThese data support previous case studies of neoepitope-specific CD8+ T cells in melanoma and indicate that successful TIL-ACT is associated with an expansion of neoepitope-specific CD8+ T cells.FUNDINGNEYE Foundation; European Research Council; Lundbeck Foundation Fellowship; Carlsberg Foundation.


Asunto(s)
Traslado Adoptivo , Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/inmunología , Activación de Linfocitos , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma , Femenino , Humanos , Masculino , Melanoma/inmunología , Melanoma/terapia
8.
Cell Oncol (Dordr) ; 44(4): 805-820, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33939112

RESUMEN

PURPOSE: Most HER2 positive invasive cancers are either intrinsic non-responsive or develop resistance when treated with 1st line HER2 targeting drugs. Both 1st and 2nd line treatments of HER2 positive cancers are aimed at targeting the HER2 receptor directly, thereby strongly limiting the treatment options of HER2/ErbB2 inhibition resistant invasive cancers. METHODS: We used phenotypic high throughput microscopy screening to identify efficient inhibitors of ErbB2-induced invasion using 1st line HER2 inhibitor trastuzumab- and pertuzumab-resistant, p95-ErbB2 expressing breast cancer cells in conjunction with the Prestwick Chemical Library®. The screening entailed a drug's ability to inhibit ErbB2-induced, invasion-promoting positioning of lysosomes at the cellular periphery, a phenotype that defines their invasiveness. In addition, we used high throughput microscopy and biochemical assays to assess the effects of the drugs on lysosomal membrane permeabilization (LMP) and autophagy, two features connected to cancer treatment. Using 2nd line HER2 inhibitor lapatinib resistant 3-dimensional model systems, we assessed the effects of the drugs on ErbB2 positive breast cancer spheroids and developed a high-throughput invasion assay for HER2 positive ovarian cancer organoids for further evaluation. RESULTS: We identified Auranofin, Colchicine, Monensin, Niclosamide, Podophyllotoxin, Quinacrine and Thiostrepton as efficient inhibitors of invasive growth of 2nd line HER2 inhibitor lapatinib resistant breast cancer spheroids and ovarian cancer organoids. We classified these drugs into four groups based on their ability to target lysosomes by inducing autophagy and/or LMP, i.e., drugs inducing early LMP, early autophagy with late LMP, late LMP, or neither. CONCLUSIONS: Our results indicate that targetable lysosome-engaging cellular pathways downstream of ErbB2 contribute to invasion. They support lysosomal trafficking as an attractive target for therapy aiming at preventing the spreading of cancer cells. Since these drugs additionally possess anti-inflammatory activities, they could serve as multipurpose drugs simultaneously targeting infection/inflammation and cancer spreading.


Asunto(s)
Antiinflamatorios/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Lisosomas/efectos de los fármacos , Receptor ErbB-2/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Antineoplásicos/uso terapéutico , Autofagia/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Lapatinib/uso terapéutico , Lisosomas/metabolismo , Células MCF-7 , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Invasividad Neoplásica
9.
Cancers (Basel) ; 14(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35008303

RESUMEN

Hepatocellular carcinoma (HCC) is the third leading cause of death from cancer globally. Indeed, only a few treatments are available, most of which are effective only for the early stages of the disease. Therefore, there is an urgent needing for potential markers for a specifically targeted therapy. Candidate proteins were selected from datasets of The Human Protein Atlas, in order to identify specific tumor-associated proteins overexpressed in HCC samples associated with poor prognosis. Potential epitopes were predicted from such proteins, and homology with peptides derived from viral proteins was assessed. A multiparametric validation was performed, including recognition by PBMCs from HCC-patients and healthy donors, showing a T-cell cross-reactivity with paired epitopes. These results provide novel HCC-specific tumor-associated antigens (TAAs) for immunotherapeutic anti-HCC strategies potentially able to expand pre-existing virus-specific CD8+ T cells with superior anticancer efficacy.

10.
Mol Oncol ; 14(12): 3121-3134, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32896947

RESUMEN

More effective therapy for patients with either muscle-invasive or high-risk non-muscle-invasive urothelial carcinoma of the bladder (UCB) is an unmet clinical need. For this, drug repositioning of clinically approved drugs represents an interesting approach. By repurposing existing drugs, alternative anticancer therapies can be introduced in the clinic relatively fast, because the safety and dosing of these clinically approved pharmacological agents are generally well known. Cationic amphiphilic drugs (CADs) dose-dependently decreased the viability of a panel of human UCB lines in vitro. CADs induced lysosomal puncta formation, a hallmark of lysosomal leakage. Intravesical instillation of the CAD penfluridol in an orthotopic mouse xenograft model of human UCB resulted in significantly reduced intravesical tumor growth and metastatic progression. Furthermore, treatment of patient-derived ex vivo cultured human UCB tissue caused significant partial or complete antitumor responses in 97% of the explanted tumor tissues. In conclusion, penfluridol represents a promising treatment option for bladder cancer patients and warrants further clinical evaluation.


Asunto(s)
Antineoplásicos/uso terapéutico , Tensoactivos/uso terapéutico , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Cationes , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Clonales , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Ratones Endogámicos BALB C , Ratones Desnudos , Metástasis de la Neoplasia , Penfluridol/farmacología , Penfluridol/uso terapéutico , Tensoactivos/farmacología , Neoplasias de la Vejiga Urinaria/patología , Urotelio/efectos de los fármacos , Urotelio/patología , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Oncogene ; 38(17): 3170-3184, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30622337

RESUMEN

HER2/ErbB2 activation turns on transcriptional processes that induce local invasion and lead to systemic metastasis. The early transcriptional changes needed for ErbB2-induced invasion are poorly understood. Here, we link ErbB2 activation to invasion via ErbB2-induced, SUMO-directed phosphorylation of a single serine residue, S27, of the transcription factor myeloid zinc finger-1 (MZF1). Utilizing an antibody against MZF1-pS27, we show that the phosphorylation of S27 correlates significantly (p < 0.0001) with high-level expression of ErbB2 in primary invasive breast tumors. Phosphorylation of MZF1-S27 is an early response to ErbB2 activation and results in increased transcriptional activity of MZF1. It is needed for the ErbB2-induced expression of MZF1 target genes CTSB and PRKCA, and invasion of single-cells from ErbB2-expressing breast cancer spheroids. The phosphorylation of MZF1-S27 is preceded by poly-SUMOylation of K23, which can make S27 accessible to efficient phosphorylation by PAK4. Based on our results, we suggest for an activation mechanism where phosphorylation of MZF1-S27 triggers MZF1 dissociation from its transcriptional repressors such as the CCCTC-binding factor (CTCF). Our findings increase understanding of the regulation of invasive signaling in breast cancer by uncovering a detailed biological mechanism of how ErbB2 activation can rapidly lead to its invasion-promoting target gene expression and invasion.


Asunto(s)
Neoplasias de la Mama/metabolismo , Factor de Unión a CCCTC/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Lisosomas/metabolismo , Receptor ErbB-2/metabolismo , Serina/metabolismo , Quinasas p21 Activadas/metabolismo , Neoplasias de la Mama/genética , Línea Celular Tumoral , Femenino , Humanos , Factores de Transcripción de Tipo Kruppel/química , Factores de Transcripción de Tipo Kruppel/metabolismo , Células MCF-7 , Modelos Moleculares , Invasividad Neoplásica , Fosforilación , Sumoilación , Transcripción Genética , Regulación hacia Arriba
12.
Int J Cancer ; 143(6): 1315-1326, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29658114

RESUMEN

Proton pump inhibitors (PPIs) are commonly used as a supplement to cancer therapy. Yet, their effect on cancer mortality is largely unknown. Using data from Danish nationwide registries and Cox models regressing of both propensity scores and drug use, we estimated hazard ratios (HRs) with 95% confidence intervals (CIs) for cancer-specific and noncancer death among PPI users (≥2 prescriptions within six months after diagnosis; n = 36,066) compared with nonusers (<2 prescriptions, n = 311,853) or users of histamine H2 -receptor antagonists (H2 RA; n = 5,152). Adjusted HRs for cancer-specific mortality among postdiagnostic PPI users as compared with nonusers or H2 RA users were 1.29 (95% CI, 1.27-1.32) and 1.15 (95% CI, 1.10-1.20), respectively. HRs for cancer mortality associated with PPI use were highest for ovarian (1.35; 95% CI, 1.20-1.52) and lowest for esophageal cancer (0.91; 95% CI, 0.81-1.04). The associations were stronger among new PPI users after cancer diagnosis, indicating potential confounding. To test the effect of PPIs on tumor growth in a model system free for confounding factors, we investigated the effect of pantoprazole on tumor growth in mice. Pantoprazole (5 mg/kg/day) enhanced tumor growth (p = 0.033) and reduced the antitumor activity of gemcitabine (p = 0.008) in fibrosarcoma-bearing Balb/c mice, but not in immunodeficient Balb/c nude mice. In breast carcinoma-bearing FVB/N mice, pantoprazole had no effect on tumor growth alone but it reduced the life-prolonging effect of doxorubicin significantly (p = 0.007). Taken together, these data raise concerns about the increasing use of PPIs and calls for further studies addressing their safety among cancer patients.


Asunto(s)
Neoplasias/mortalidad , Inhibidores de la Bomba de Protones/efectos adversos , Anciano , Animales , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Pronóstico , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Oncogenesis ; 7(2): 14, 2018 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-29396433

RESUMEN

Cancer cells utilize lysosomes for invasion and metastasis. Myeloid Zinc Finger1 (MZF1) is an ErbB2-responsive transcription factor that promotes invasion of breast cancer cells via upregulation of lysosomal cathepsins B and L. Here we identify let-7 microRNA, a well-known tumor suppressor in breast cancer, as a direct negative regulator of MZF1. Analysis of primary breast cancer tissues reveals a gradual upregulation of MZF1 from normal breast epithelium to invasive ductal carcinoma and a negative correlation between several let-7 family members and MZF1 mRNA, suggesting that the inverse regulatory relationship between let-7 and MZF1 may play a role in the development of invasive breast cancer. Furthermore, we show that MZF1 regulates lysosome trafficking in ErbB2-positive breast cancer cells. In line with this, MZF1 depletion or let-7 expression inhibits invasion-promoting anterograde trafficking of lysosomes and invasion of ErbB2-expressing MCF7 spheres. The results presented here link MZF1 and let-7 to lysosomal processes in ErbB2-positive breast cancer cells that in non-cancerous cells have primarily been connected to the transcription factor EB. Identifying MZF1 and let-7 as regulators of lysosome distribution in invasive breast cancer cells, uncouples cancer-associated, invasion-promoting lysosomal alterations from normal lysosomal functions and thus opens up new possibilities for the therapeutic targeting of cancer lysosomes.

14.
Autophagy ; 11(8): 1408-24, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26114578

RESUMEN

Lysosomal membrane permeabilization (LMP) contributes to tissue involution, degenerative diseases, and cancer therapy. Its investigation has, however, been hindered by the lack of sensitive methods. Here, we characterize and validate the detection of galectin puncta at leaky lysosomes as a highly sensitive and easily manageable assay for LMP. LGALS1/galectin-1 and LGALS3/galectin-3 are best suited for this purpose due to their widespread expression, rapid translocation to leaky lysosomes and availability of high-affinity antibodies. Galectin staining marks individual leaky lysosomes early during lysosomal cell death and is useful when defining whether LMP is a primary or secondary cause of cell death. This sensitive method also reveals that cells can survive limited LMP and confirms a rapid formation of autophagic structures at the site of galectin puncta. Importantly, galectin staining detects individual leaky lysosomes also in paraffin-embedded tissues allowing us to demonstrate LMP in tumor xenografts in mice treated with cationic amphiphilic drugs and to identify a subpopulation of lysosomes that initiates LMP in involuting mouse mammary gland. The use of ectopic fluorescent galectins renders the galectin puncta assay suitable for automated screening and visualization of LMP in live cells and animals. Thus, the lysosomal galectin puncta assay opens up new possibilities to study LMP in cell death and its role in other cellular processes such as autophagy, senescence, aging, and inflammation.


Asunto(s)
Autofagia , Permeabilidad de la Membrana Celular , Galectinas/química , Lisosomas/metabolismo , Animales , Apoptosis , Proteínas Sanguíneas , Mama/patología , Caenorhabditis elegans/fisiología , Muerte Celular , Línea Celular Tumoral , Supervivencia Celular , Femenino , Galectina 1/metabolismo , Galectina 3/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Inflamación , Membranas Intracelulares/metabolismo , Células MCF-7 , Ratones , Microscopía Confocal , Trasplante de Neoplasias , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA