Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 14451, 2023 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-37660150

RESUMEN

Increasing evidence suggests that chronic inflammation plays an important role in the pathogenesis of age-related macular degeneration (AMD); however, the precise pathogenic stressors and sensors, and their impact on disease progression remain unclear. Several studies have demonstrated that type I interferon (IFN) response is activated in the retinal pigment epithelium (RPE) of AMD patients. Previously, we demonstrated that human RPE cells can initiate RNA-mediated type I IFN responses through RIG-I, yet are unable to directly sense and respond to DNA. In this study, we utilized a co-culture system combining primary human macrophage and iPS-derived RPE to study how each cell type responds to nucleic acids challenges and their effect on RPE barrier function in a homotypic and heterotypic manner. We find that DNA-induced macrophage activation induces an IFN response in the RPE, and compromises RPE barrier function via tight-junction remodeling. Investigation of the secreted cytokines responsible for RPE dysfunction following DNA-induced macrophages activation indicates that neutralization of macrophage-secreted TNFα, but not IFNß, is sufficient to rescue RPE morphology and barrier function. Our data reveals a novel mechanism of intercellular communication by which DNA induces RPE dysfunction via macrophage-secreted TNFa, highlighting the complexity and potential pathological relevance of RPE and macrophage interactions.


Asunto(s)
Interferón Tipo I , Degeneración Macular , Ácidos Nucleicos , Humanos , Factor de Necrosis Tumoral alfa , ADN , Citocinas , Macrófagos
2.
PLoS One ; 17(7): e0271656, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35901031

RESUMEN

Inflammatory signaling induces barrier dysfunction in retinal-pigmented epithelium (RPE) cells and plays a role in the pathology of age-related macular degeneration (AMD). We studied the role of Zn flux from the endoplasmic reticulum (ER) to the cytoplasm via Zip7 during inflammatory signaling in RPE cells. In ARPE-19 cells, Zip7 inhibition reduced impedance loss, FITC-dextran permeability and cytokine induction caused by challenge with IL-1ß/TNF-α. Zip7 inhibition in iPS-derived RPE cells challenged with TNF- α reduced barrier loss in TER assays. In ARPE-19 cells, a Zn ionophore restored cytokine induction and barrier loss in cells challenged with IL-1 ß /TNF- α despite Zip7 inhibition. A cell permeable Zn chelator demonstrated that Zn is essential for IL-1 ß /TNF- α signaling. ER stress caused by Zip7 inhibition in ARPE-19 cells was found to partially contribute to reducing barrier dysfunction caused by IL-1 ß /TNF- α. Overall, it was shown that Zn flux through Zip7 from the ER to the cytoplasm plays a critical role in driving barrier dysfunction caused by inflammatory cytokines in RPE cells.


Asunto(s)
Proteínas de Transporte de Catión , Retículo Endoplásmico , Citocinas , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Interleucina-1beta/farmacología , Epitelio Pigmentado de la Retina/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Zinc/metabolismo
3.
Nat Commun ; 13(1): 3401, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35697682

RESUMEN

Age-related macular degeneration (AMD) is one of the most common causes of visual impairment in the elderly, with a complex and still poorly understood etiology. Whole-genome association studies have discovered 34 genomic regions associated with AMD. However, the genes and cognate proteins that mediate the risk, are largely unknown. In the current study, we integrate levels of 4782 human serum proteins with all genetic risk loci for AMD in a large population-based study of the elderly, revealing many proteins and pathways linked to the disease. Serum proteins are also found to reflect AMD severity independent of genetics and predict progression from early to advanced AMD after five years in this population. A two-sample Mendelian randomization study identifies several proteins that are causally related to the disease and are directionally consistent with the observational estimates. In this work, we present a robust and unique framework for elucidating the pathobiology of AMD.


Asunto(s)
Degeneración Macular , Proteogenómica , Anciano , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Degeneración Macular/genética , Degeneración Macular/metabolismo , Análisis de la Aleatorización Mendeliana , Factores de Riesgo
4.
J Immunol Res ; 2021: 9975628, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34239945

RESUMEN

Age-related macular degeneration (AMD), a degenerative disease of the outer retina, is the leading cause of blindness among the elderly. A hallmark of geographic atrophy (GA), an advanced type of nonneovascular AMD (dry AMD), is photoreceptor and retinal pigment epithelium (RPE) cell death. Currently, there are no FDA-approved therapies for GA due to a lack of understanding of the disease-causing mechanisms. Increasing evidence suggests that chronic inflammation plays a predominant role in the pathogenesis of dry AMD. Dead or stressed cells release danger signals and inflammatory factors, which causes further damage to neighboring cells. It has been reported that type I interferon (IFN) response is activated in RPE cells in patients with AMD. However, how RPE cells sense stress to initiate IFN response and cause further damage to the retina are still unknown. Although it has been reported that RPE can respond to extracellularly added dsRNA, it is unknown whether and how RPE detects and senses internally generated or internalized nucleic acids. Here, we elucidated the molecular mechanism by which RPE cells sense intracellular nucleic acids. Our data demonstrate that RPE cells can respond to intracellular RNA and induce type I IFN responses via the RIG-I (DExD/H-box helicase 58, DDX58) RNA helicase. In contrast, we showed that RPE cells were unable to directly sense and respond to DNA through the cGAS-STING pathway. We demonstrated that this was due to the absence of the cyclic GMP-AMP synthase (cGAS) DNA sensor in these cells. The activation of IFN response via RIG-I induced expression of cell death effectors and caused barrier function loss in RPE cells. These data suggested that RPE-intrinsic pathways of nucleic acid sensing are biased toward RNA sensing.


Asunto(s)
Proteína 58 DEAD Box/metabolismo , Degeneración Macular/inmunología , ARN Bicatenario/metabolismo , Receptores Inmunológicos/metabolismo , Epitelio Pigmentado de la Retina/patología , Apoptosis/inmunología , Línea Celular , Proteína 58 DEAD Box/genética , Técnicas de Inactivación de Genes , Humanos , Interferón Tipo I/metabolismo , Degeneración Macular/patología , Estrés Oxidativo , Receptores Inmunológicos/genética , Epitelio Pigmentado de la Retina/inmunología , Epitelio Pigmentado de la Retina/metabolismo
5.
Invest Ophthalmol Vis Sci ; 62(7): 26, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34160562

RESUMEN

Purpose: Dysregulation of the alternative complement pathway is a major pathogenic mechanism in age-related macular degeneration. We investigated whether locally synthesized complement components contribute to AMD by profiling complement expression in postmortem eyes with and without AMD. Methods: AMD severity grade 1 to 4 was determined by analysis of postmortem acquired fundus images and hematoxylin and eosin stained histological sections. TaqMan (donor eyes n = 39) and RNAscope/in situ hybridization (n = 10) were performed to detect complement mRNA. Meso scale discovery assay and Western blot (n = 31) were used to measure complement protein levels. Results: The levels of complement mRNA and protein expression were approximately 15- to 100-fold (P < 0.0001-0.001) higher in macular retinal pigment epithelium (RPE)/choroid tissue than in neural retina, regardless of AMD grade status. Complement mRNA and protein levels were modestly elevated in vitreous and the macular neural retina in eyes with geographic atrophy (GA), but not in eyes with early or intermediate AMD, compared to normal eyes. Alternative and classical pathway complement mRNAs (C3, CFB, CFH, CFI, C1QA) identified by RNAscope were conspicuous in areas of atrophy; in those areas C3 mRNA was observed in a subset of IBA1+ microglia or macrophages. Conclusions: We verified that RPE/choroid contains most ocular complement; thus RPE/choroid rather than the neural retina or vitreous is likely to be the key site for complement inhibition to treat GA or earlier stage of the disease. Outer retinal local production of complement mRNAs along with evidence of increased complement activation is a feature of GA.


Asunto(s)
Coroides , Activación de Complemento , Proteínas del Sistema Complemento/genética , Degeneración Macular , Retina , Epitelio Pigmentado de la Retina , Anciano , Autopsia/métodos , Coroides/metabolismo , Coroides/patología , Vía Alternativa del Complemento , Femenino , Perfilación de la Expresión Génica/métodos , Atrofia Geográfica/patología , Humanos , Degeneración Macular/metabolismo , Degeneración Macular/patología , Masculino , ARN Mensajero/análisis , Retina/metabolismo , Retina/patología , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología
7.
J Mol Biol ; 375(4): 979-96, 2008 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-18054791

RESUMEN

Ubiquitin (Ub) is one of the most highly conserved signaling proteins in eukaryotes. In carrying out its myriad functions, Ub conjugated to substrate proteins interacts with dozens of receptor proteins that link the Ub signal to various biological outcomes. Here we report mutations in conserved residues of Ub's hydrophobic core that have surprisingly potent and specific effects on molecular recognition. Mutant Ubs bind tightly to the Ub-associated domain of the receptor proteins Rad23 and hHR23A but fail to bind the Ub-interacting motif present in the receptors Rpn10 and S5a. Moreover, chains assembled on target substrates with mutant Ubs are unable to support substrate degradation by the proteasome in vitro or sustain viability of yeast cells. The mutations have relatively little effect on Ub's overall structure but reduce its rigidity and cause a slight displacement of the C-terminal beta-sheet, thereby compromising association with Ub-interacting motif but not with Ub-associated domains. These studies emphasize an unexpected role for Ub's core in molecular recognition and suggest that the diversity of protein-protein interactions in which Ub engages placed enormous constraints on its evolvability.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Mutación , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Alanina/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Deuterio/metabolismo , Relación Dosis-Respuesta a Droga , Glutatión Transferasa/metabolismo , Glicina/metabolismo , Guanidina/farmacología , Humanos , Hidrógeno/metabolismo , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Lisina/metabolismo , Modelos Moleculares , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Conformación Proteica , Desnaturalización Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relación Estructura-Actividad , Especificidad por Sustrato , Temperatura , Termodinámica , Ubiquitina/química , Ubiquitinación
8.
J Exp Med ; 200(3): 321-30, 2004 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-15280420

RESUMEN

The structure-specific endonuclease ERCC1-XPF is an essential component of the nucleotide excision DNA repair pathway. ERCC1-XPF nicks double-stranded DNA immediately adjacent to 3' single-strand regions. Substrates include DNA bubbles and flaps. Furthermore, ERCC1 interacts with Msh2, a mismatch repair (MMR) protein involved in class switch recombination (CSR). Therefore, ERCC1-XPF has abilities that might be useful for antibody CSR. We tested whether ERCC1 is involved in CSR and found that Ercc1(-)(/)(-) splenic B cells show moderately reduced CSR in vitro, demonstrating that ERCC1-XPF participates in, but is not required for, CSR. To investigate the role of ERCC1 in CSR, the nucleotide sequences of switch (S) regions were determined. The mutation frequency in germline Smicro segments and recombined Smicro-Sgamma3 segments cloned from Ercc1(-)(/)(-) splenic B cells induced to switch in culture was identical to that of wild-type (WT) littermates. However, Ercc1(-)(/)(-) cells show increased targeting of the mutations to G:C bp in RGYW/WRCY hotspots and mutations occur at sites more distant from the S-S junctions compared with WT mice. The results indicate that ERCC1 is not epistatic with MMR and suggest that ERCC1 might be involved in processing or repair of DNA lesions in S regions during CSR.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Endonucleasas/fisiología , Cambio de Clase de Inmunoglobulina , Recombinación Genética , Animales , Disparidad de Par Base , Reparación del ADN , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Ratones , Ratones Endogámicos C57BL , Proteína 2 Homóloga a MutS , Mutación , Proteínas Proto-Oncogénicas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...