Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Neurosci ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39032002

RESUMEN

Sleep/wake cycles intricately shape physiological activities including cognitive brain functions, yet the precise molecular orchestrators of sleep remain elusive. Notably, the clinical impact of benzodiazepine drugs underscores the pivotal role of GABAergic neurotransmission in sleep regulation. However, the specific contributions of distinct GABAA receptor subtypes and their principal scaffolding protein, gephyrin, in sleep dynamics remain unclear. The evolving role of synaptic phospho-proteome alterations at excitatory and inhibitory synapses suggests a potential avenue for modulating gephyrin and, consequently, GABAARs for sleep through on-demand kinase recruitment. Our study unveils the distinctive roles of two prevalent GABAA receptor subtypes, α1- and α2-GABAARs, in influencing sleep duration and electrical sleep activity. Notably, the absence of α1-GABAARs emerges as central in sleep regulation, manifesting significant alterations in both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep during dark or active phases, accompanied by altered electroencephalogram (EEG) patterns across various frequencies. Gephyrin proteomics analysis reveals sleep/wake-dependent interactions with a repertoire of known and novel kinases. Crucially, we identify the regulation of gephyrin interaction with ERK1/2, and phosphorylations at serines 268 and 270 are dictated by sleep/wake cycles. Employing AAV-eGFP-gephyrin or its phospho-null variant (S268A/S270A), we disrupt sleep either globally or locally to demonstrate gephyrin phosphorylation as a sleep regulator. In summary, our findings support the local cortical sleep hypothesis and we unveil a molecular mechanism operating at GABAergic synapses, providing critical insights into the intricate regulation of sleep.

2.
STAR Protoc ; 5(2): 103117, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38857153

RESUMEN

Studying synapses in vivo presents challenges due to the complexity of accurately targeting and visualizing specific synaptic proteins within the brain. Here, we present a protocol for in vivo analysis of pre- and post-synaptic protein function in mice. We describe steps for combining adeno-associated virus (AAV)-mediated gene transfer to manipulate specific neuron subtypes. We also describe immunofluorescence on artificial cerebrospinal fluid (ACSF)-perfused brain sections to enhance the visualization of synaptic proteins. For complete details on the use and execution of this protocol, please refer to Cramer et al.1.


Asunto(s)
Dependovirus , Sinapsis , Animales , Ratones , Sinapsis/metabolismo , Dependovirus/genética , Encéfalo/metabolismo , Neuronas/metabolismo , Técnicas de Transferencia de Gen , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética
3.
STAR Protoc ; 5(2): 102991, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38607922

RESUMEN

Primary hippocampal cultures grown from genetically modified mice provide a simplified context to study molecular mechanisms underlying neuronal development, synaptogenesis, and synapse plasticity in vitro. Here, we describe a simple protocol for culturing hippocampal neurons from P0 to P2 mice and a strategy for inducing alterations in synaptic strength at inhibitory and excitatory synapses in vitro. We also describe approaches for immunofluorescent labeling, image acquisition, and quantification of synaptic proteins. For complete details on the use and execution of this protocol, please refer to Cramer et al.1.


Asunto(s)
Hipocampo , Neuronas , Animales , Hipocampo/citología , Hipocampo/metabolismo , Ratones , Neuronas/citología , Neuronas/metabolismo , Neuronas/fisiología , Células Cultivadas , Técnicas de Cultivo de Célula/métodos , Sinapsis/fisiología , Sinapsis/metabolismo
4.
Mol Psychiatry ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503929

RESUMEN

The precise function of specialized GABAergic interneuron subtypes is required to provide appropriate synaptic inhibition for regulating principal neuron excitability and synchronization within brain circuits. Of these, parvalbumin-type (PV neuron) dysfunction is a feature of several sex-biased psychiatric and brain disorders, although, the underlying developmental mechanisms are unclear. While the transcriptional action of sex hormones generates sexual dimorphism during brain development, whether kinase signaling contributes to sex differences in PV neuron function remains unexplored. In the hippocampus, we report that gephyrin, the main inhibitory post-synaptic scaffolding protein, is phosphorylated at serine S268 and S270 in a developmentally-dependent manner in both males and females. When examining GphnS268A/S270A mice in which site-specific phosphorylation is constitutively blocked, we found that sex differences in PV neuron density in the hippocampal CA1 present in WT mice were abolished, coincident with a female-specific increase in PV neuron-derived terminals and increased inhibitory input onto principal cells. Electrophysiological analysis of CA1 PV neurons indicated that gephyrin phosphorylation is required for sexually dimorphic function. Moreover, while male and female WT mice showed no difference in hippocampus-dependent memory tasks, GphnS268A/S270A mice exhibited sex- and task-specific deficits, indicating that gephyrin phosphorylation is differentially required by males and females for convergent cognitive function. In fate mapping experiments, we uncovered that gephyrin phosphorylation at S268 and S270 establishes sex differences in putative PV neuron density during early postnatal development. Furthermore, patch-sequencing of putative PV neurons at postnatal day 4 revealed that gephyrin phosphorylation contributes to sex differences in the transcriptomic profile of developing interneurons. Therefore, these early shifts in male-female interneuron development may drive adult sex differences in PV neuron function and connectivity. Our results identify gephyrin phosphorylation as a new substrate organizing PV neuron development at the anatomical, functional, and transcriptional levels in a sex-dependent manner, thus implicating kinase signaling disruption as a new mechanism contributing to the sex-dependent etiology of brain disorders.

5.
Sci Rep ; 14(1): 4169, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38379020

RESUMEN

Gephyrin is the main scaffolding protein at inhibitory postsynaptic sites, and its clusters are the signaling hubs where several molecular pathways converge. Post-translational modifications (PTMs) of gephyrin alter GABAA receptor clustering at the synapse, but it is unclear how this affects neuronal activity at the circuit level. We assessed the contribution of gephyrin PTMs to microcircuit activity in the mouse barrel cortex by slice electrophysiology and in vivo two-photon calcium imaging of layer 2/3 (L2/3) pyramidal cells during single-whisker stimulation. Our results suggest that, depending on the type of gephyrin PTM, the neuronal activities of L2/3 pyramidal neurons can be differentially modulated, leading to changes in the size of the neuronal population responding to the single-whisker stimulation. Furthermore, we show that gephyrin PTMs have their preference for selecting synaptic GABAA receptor subunits. Our results identify an important role of gephyrin and GABAergic postsynaptic sites for cortical microcircuit function during sensory stimulation.


Asunto(s)
Proteínas de la Membrana , Receptores de GABA-A , Vibrisas , Animales , Receptores de GABA-A/metabolismo , Vibrisas/metabolismo , Proteínas Portadoras/metabolismo , Células Piramidales/metabolismo , Sinapsis/metabolismo
6.
Nat Neurosci ; 26(10): 1701-1712, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37749256

RESUMEN

Interleukin-12 (IL-12) is a potent driver of type 1 immunity. Paradoxically, in autoimmune conditions, including of the CNS, IL-12 reduces inflammation. The underlying mechanism behind these opposing properties and the involved cellular players remain elusive. Here we map IL-12 receptor (IL-12R) expression to NK and T cells as well as neurons and oligodendrocytes. Conditionally ablating the IL-12R across these cell types in adult mice and assessing their susceptibility to experimental autoimmune encephalomyelitis revealed that the neuroprotective role of IL-12 is mediated by neuroectoderm-derived cells, specifically neurons, and not immune cells. In human brain tissue from donors with multiple sclerosis, we observe an IL-12R distribution comparable to mice, suggesting similar mechanisms in mice and humans. Combining flow cytometry, bulk and single-nucleus RNA sequencing, we reveal an IL-12-induced neuroprotective tissue adaption preventing early neurodegeneration and sustaining trophic factor release during neuroinflammation, thereby maintaining CNS integrity in mice.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Interleucina-12 , Neuroprotección , Adulto , Animales , Humanos , Ratones , Sistema Nervioso Central , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias , Neuronas/metabolismo
7.
Cell Rep ; 42(8): 112947, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37572323

RESUMEN

The molecular code that controls synapse formation and maintenance in vivo has remained quite sparse. Here, we identify that the secreted protein Adamtsl3 functions as critical hippocampal synapse organizer acting through the transmembrane receptor DCC (deleted in colorectal cancer). Traditionally, DCC function has been associated with glutamatergic synaptogenesis and plasticity in response to Netrin-1 signaling. We demonstrate that early post-natal deletion of Adamtsl3 in neurons impairs DCC protein expression, causing reduced density of both glutamatergic and GABAergic synapses. Adult deletion of Adamtsl3 in either GABAergic or glutamatergic neurons does not interfere with DCC-Netrin-1 function at glutamatergic synapses but controls DCC signaling at GABAergic synapses. The Adamtsl3-DCC signaling unit is further essential for activity-dependent adaptations at GABAergic synapses, involving DCC phosphorylation and Src kinase activation. These findings might be particularly relevant for schizophrenia because genetic variants in Adamtsl3 and DCC have been independently linked with schizophrenia in patients.


Asunto(s)
Neuronas , Sinapsis , Humanos , Receptor DCC/metabolismo , Netrina-1/metabolismo , Neuronas/metabolismo , Transducción de Señal , Familia-src Quinasas/metabolismo , Sinapsis/metabolismo , Animales
8.
Front Physiol ; 13: 909795, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277219

RESUMEN

Searching for food follows a well-organized decision process in mammals to take up food only if necessary. Moreover, scavenging is preferred during their activity phase. Various time-dependent regulatory processes have been identified originating from the suprachiasmatic nuclei (SCN), which convert external light information into synchronizing output signals. However, a direct impact of the SCN on the timing of normal food searching has not yet been found. Here, we revisited the function of the SCN to affect when mice look for food. We found that this process was independent of light but modified by the palatability of the food source. Surprisingly, reducing the output from the SCN, in particular from the vasopressin releasing neurons, reduced the amount of scavenging during the early activity phase. The SCN appeared to transmit a signal to the paraventricular nuclei (PVN) via GABA receptor A1. Finally, the interaction of SCN and PVN was verified by retrograde transport-mediated complementation. None of the genetic manipulations affected the uptake of more palatable food. The data indicate that the PVN are sufficient to produce blunted food searching rhythms and are responsive to hedonistic feeding. Nevertheless, the search for normal food during the early activity phase is significantly enhanced by the SCN.

9.
Elife ; 112022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36314779

RESUMEN

Neuroscience currently requires the use of antibodies to study synaptic proteins, where antibody binding is used as a correlate to define the presence, plasticity, and regulation of synapses. Gephyrin is an inhibitory synaptic scaffolding protein used to mark GABAergic and glycinergic postsynaptic sites. Despite the importance of gephyrin in modulating inhibitory transmission, its study is currently limited by the tractability of available reagents. Designed Ankyrin Repeat Proteins (DARPins) are a class of synthetic protein binder derived from diverse libraries by in vitro selection and tested by high-throughput screening to produce specific binders. In order to generate a functionally diverse toolset for studying inhibitory synapses, we screened a DARPin library against gephyrin mutants representing both phosphorylated and dephosphorylated states. We validated the robust use of anti-gephyrin DARPin clones for morphological identification of gephyrin clusters in rat neuron culture and mouse brain tissue, discovering previously overlooked clusters. This DARPin-based toolset includes clones with heterogenous gephyrin binding modes that allowed for identification of the most extensive gephyrin interactome to date and defined novel classes of putative interactors, creating a framework for understanding gephyrin's nonsynaptic functions. This study demonstrates anti-gephyrin DARPins as a versatile platform for studying inhibitory synapses in an unprecedented manner.


Asunto(s)
Proteínas de Repetición de Anquirina Diseñadas , Receptores de GABA-A , Ratas , Ratones , Animales , Receptores de GABA-A/metabolismo , Proteínas Portadoras/metabolismo , Sinapsis/fisiología , Biología
10.
Sci Adv ; 8(9): eabj0112, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35245123

RESUMEN

Microglia interact with neurons to facilitate synapse plasticity; however, signal(s) contributing to microglia activation for synapse elimination in pathology are not fully understood. Here, using in vitro organotypic hippocampal slice cultures and transient middle cerebral artery occlusion (MCAO) in genetically engineered mice in vivo, we report that at 24 hours after ischemia, microglia release brain-derived neurotrophic factor (BDNF) to downregulate glutamatergic and GABAergic synapses within the peri-infarct area. Analysis of the cornu ammonis 1 (CA1) in vitro shows that proBDNF and mBDNF downregulate glutamatergic dendritic spines and gephyrin scaffold stability through p75 neurotrophin receptor (p75NTR) and tropomyosin receptor kinase B (TrkB) receptors, respectively. After MCAO, we report that in the peri-infarct area and in the corresponding contralateral hemisphere, similar neuroplasticity occurs through microglia activation and gephyrin phosphorylation at serine-268 and serine-270 in vivo. Targeted deletion of the Bdnf gene in microglia or GphnS268A/S270A (phospho-null) point mutations protects against ischemic brain damage, neuroinflammation, and synapse downregulation after MCAO.


Asunto(s)
Isquemia Encefálica , Factor Neurotrófico Derivado del Encéfalo , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Infarto , Ratones , Microglía , Receptor trkB , Serina , Sinapsis
12.
J Biol Chem ; 298(5): 101840, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35307349

RESUMEN

Posttranslational addition of a small ubiquitin-like modifier (SUMO) moiety (SUMOylation) has been implicated in pathologies such as brain ischemia, diabetic peripheral neuropathy, and neurodegeneration. However, nuclear enrichment of SUMO pathway proteins has made it difficult to ascertain how ion channels, proteins that are typically localized to and function at the plasma membrane, and mitochondria are SUMOylated. Here, we report that the trophic factor, brain-derived neurotrophic factor (BDNF) regulates SUMO proteins both spatially and temporally in neurons. We show that BDNF signaling via the receptor tropomyosin-related kinase B facilitates nuclear exodus of SUMO proteins and subsequent enrichment within dendrites. Of the various SUMO E3 ligases, we found that PIAS-3 dendrite enrichment in response to BDNF signaling specifically modulates subsequent ERK1/2 kinase pathway signaling. In addition, we found the PIAS-3 RING and Ser/Thr domains, albeit in opposing manners, functionally inhibit GABA-mediated inhibition. Finally, using oxygen-glucose deprivation as an in vitro model for ischemia, we show that BDNF-tropomyosin-related kinase B signaling negatively impairs clustering of the main scaffolding protein at GABAergic postsynapse, gephyrin, whereby reducing GABAergic neurotransmission postischemia. SUMOylation-defective gephyrin K148R/K724R mutant transgene expression reversed these ischemia-induced changes in gephyrin cluster density. Taken together, these data suggest that BDNF signaling facilitates the temporal relocation of nuclear-enriched SUMO proteins to dendrites to influence postsynaptic protein SUMOylation.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Ubiquitina-Proteína Ligasas , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas de la Membrana , Proteínas Inhibidoras de STAT Activados/genética , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Sumoilación , Tropomiosina/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo
13.
Nat Methods ; 19(2): 231-241, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35145320

RESUMEN

Orexins (also called hypocretins) are hypothalamic neuropeptides that carry out essential functions in the central nervous system; however, little is known about their release and range of action in vivo owing to the limited resolution of current detection technologies. Here we developed a genetically encoded orexin sensor (OxLight1) based on the engineering of circularly permutated green fluorescent protein into the human type-2 orexin receptor. In mice OxLight1 detects optogenetically evoked release of endogenous orexins in vivo with high sensitivity. Photometry recordings of OxLight1 in mice show rapid orexin release associated with spontaneous running behavior, acute stress and sleep-to-wake transitions in different brain areas. Moreover, two-photon imaging of OxLight1 reveals orexin release in layer 2/3 of the mouse somatosensory cortex during emergence from anesthesia. Thus, OxLight1 enables sensitive and direct optical detection of orexin neuropeptides with high spatiotemporal resolution in living animals.


Asunto(s)
Encéfalo/metabolismo , Imagen Molecular/métodos , Receptores de Orexina/genética , Orexinas/análisis , Proteínas Recombinantes/metabolismo , Animales , Conducta Animal , Femenino , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Receptores de Orexina/metabolismo , Orexinas/genética , Orexinas/farmacología , Fotones , Proteínas Recombinantes/genética , Reproducibilidad de los Resultados , Sueño/fisiología
14.
Science ; 374(6568): eabk2055, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34735259

RESUMEN

During development, neural circuit formation requires the stabilization of active γ-aminobutyric acid­mediated (GABAergic) synapses and the elimination of inactive ones. Here, we demonstrate that, although the activation of postsynaptic GABA type A receptors (GABAARs) and adenosine A2A receptors (A2ARs) stabilizes GABAergic synapses, only A2AR activation is sufficient. Both GABAAR- and A2AR-dependent signaling pathways act synergistically to produce adenosine 3',5'-monophosphate through the recruitment of the calcium­calmodulin­adenylyl cyclase pathway. Protein kinase A, thus activated, phosphorylates gephyrin on serine residue 303, which is required for GABAAR stabilization. Finally, the stabilization of pre- and postsynaptic GABAergic elements involves the interaction between gephyrin and the synaptogenic membrane protein Slitrk3. We propose that A2ARs act as detectors of active GABAergic synapses releasing GABA, adenosine triphosphate, and adenosine to regulate their fate toward stabilization or elimination.


Asunto(s)
Adenosina/metabolismo , Hipocampo/crecimiento & desarrollo , Neuronas/fisiología , Receptor de Adenosina A2A/metabolismo , Transducción de Señal , Sinapsis/fisiología , Ácido gamma-Aminobutírico/metabolismo , Antagonistas del Receptor de Adenosina A2 , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Cognición , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Hipocampo/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Proteínas del Tejido Nervioso , Fosforilación , Receptor de Adenosina A2A/genética , Receptores de GABA-A/metabolismo
16.
Nat Commun ; 11(1): 4990, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-33020478

RESUMEN

Neurons are highly compartmentalized cells with tightly controlled subcellular protein organization. While brain transcriptome, connectome and global proteome maps are being generated, system-wide analysis of temporal protein dynamics at the subcellular level are currently lacking. Here, we perform a temporally-resolved surfaceome analysis of primary neuron cultures and reveal dynamic surface protein clusters that reflect the functional requirements during distinct stages of neuronal development. Direct comparison of surface and total protein pools during development and homeostatic synaptic scaling demonstrates system-wide proteostasis-independent remodeling of the neuronal surface, illustrating widespread regulation on the level of surface trafficking. Finally, quantitative analysis of the neuronal surface during chemical long-term potentiation (cLTP) reveals fast externalization of diverse classes of surface proteins beyond the AMPA receptor, providing avenues to investigate the requirement of exocytosis for LTP. Our resource (neurosurfaceome.ethz.ch) highlights the importance of subcellular resolution for systems-level understanding of cellular processes.


Asunto(s)
Proteínas de la Membrana/metabolismo , Plasticidad Neuronal , Neuronas/metabolismo , Sinapsis/metabolismo , Animales , Membrana Celular/metabolismo , Células Cultivadas , Potenciales Postsinápticos Excitadores , Homeostasis , Potenciación a Largo Plazo , Mapas de Interacción de Proteínas , Transporte de Proteínas , Proteostasis , Ratas
17.
J Neurosci ; 39(47): 9424-9434, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31615840

RESUMEN

Associative memory can be rendered malleable by a reminder. Blocking the ensuing reconsolidation process is suggested as a therapeutic target for unwanted aversive memories. Matrix metalloproteinase-9 (MMP-9) is required for structural synapse remodeling involved in memory consolidation. Inhibiting MMP-9 with doxycycline is suggested to attenuate human threat conditioning. Here, we investigated whether MMP-9 inhibition also interferes with threat memory reconsolidation. Male and female human participants (N = 78) learned the association between two visual conditioned stimuli (CS+) and a 50% chance of an unconditioned nociceptive stimulus (US), and between CS- and the absence of US. On day 7, one CS+ was reminded without reinforcement 3.5 h after ingesting either 200 mg of doxycycline or placebo. On day 14, retention of CS memory was assessed under extinction by fear-potentiated startle. Contrary to our expectations, we observed a greater CS+/CS- difference in participants who were reminded under doxycycline compared with placebo. Participants who were reminded under placebo showed extinction learning during the retention test, which was not observed in the doxycycline group. There was no difference between the reminded and the nonreminded CS+ in either group. In contrast, during relearning after the retention test, the CS+/CS- difference was more pronounced in the placebo group than in the doxycycline group. To summarize, a single dose of doxycycline before threat memory reminder appeared to have no specific impact on reconsolidation, but to globally impair extinction learning, and threat relearning, beyond drug clearance.SIGNIFICANCE STATEMENT Matrix metalloproteinase-9 inhibition appears to attenuate memory consolidation. It could also be a target for blocking reconsolidation. Here, we test this hypothesis in human threat conditioning. We find that doxycycline has no specific impact on a reminded cue, but confers a global reduction in extinction learning and threat learning beyond the clearance of the drug. This may point toward a more long-lasting impact of doxycycline treatment on memory plasticity.


Asunto(s)
Doxiciclina/farmacología , Miedo/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Memoria/efectos de los fármacos , Reflejo de Sobresalto/fisiología , Adulto , Extinción Psicológica/efectos de los fármacos , Extinción Psicológica/fisiología , Miedo/fisiología , Miedo/psicología , Femenino , Humanos , Masculino , Memoria/fisiología , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Distribución Aleatoria , Reflejo de Sobresalto/efectos de los fármacos , Adulto Joven
18.
Science ; 366(6462)2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31601739

RESUMEN

Neurons have adapted mechanisms to traffic RNA and protein into distant dendritic and axonal arbors. Taking a biochemical approach, we reveal that forebrain synaptic transcript accumulation shows overwhelmingly daily rhythms, with two-thirds of synaptic transcripts showing time-of-day-dependent abundance independent of oscillations in the soma. These transcripts formed two sharp temporal and functional clusters, with transcripts preceding dawn related to metabolism and translation and those anticipating dusk related to synaptic transmission. Characterization of the synaptic proteome around the clock demonstrates the functional relevance of temporal gating for synaptic processes and energy homeostasis. Unexpectedly, sleep deprivation completely abolished proteome but not transcript oscillations. Altogether, the emerging picture is one of a circadian anticipation of messenger RNA needs in the synapse followed by translation as demanded by sleep-wake cycles.


Asunto(s)
Relojes Circadianos/genética , Ritmo Circadiano/genética , Prosencéfalo/metabolismo , Proteoma , Sueño , Sinapsis/genética , Transcriptoma , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Mensajero
19.
Science ; 366(6462)2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31601740

RESUMEN

The circadian clock drives daily changes of physiology, including sleep-wake cycles, through regulation of transcription, protein abundance, and function. Circadian phosphorylation controls cellular processes in peripheral organs, but little is known about its role in brain function and synaptic activity. We applied advanced quantitative phosphoproteomics to mouse forebrain synaptoneurosomes isolated across 24 hours, accurately quantifying almost 8000 phosphopeptides. Half of the synaptic phosphoproteins, including numerous kinases, had large-amplitude rhythms peaking at rest-activity and activity-rest transitions. Bioinformatic analyses revealed global temporal control of synaptic function through phosphorylation, including synaptic transmission, cytoskeleton reorganization, and excitatory/inhibitory balance. Sleep deprivation abolished 98% of all phosphorylation cycles in synaptoneurosomes, indicating that sleep-wake cycles rather than circadian signals are main drivers of synaptic phosphorylation, responding to both sleep and wake pressures.


Asunto(s)
Ritmo Circadiano , Fosfoproteínas/metabolismo , Prosencéfalo/metabolismo , Sueño , Sinapsis/metabolismo , Vigilia , Animales , Relojes Circadianos , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación , Fosfotransferasas
20.
Front Mol Neurosci ; 12: 187, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31456660

RESUMEN

GABAergic inhibitory neurotransmission contributes to diverse aspects of brain development and adult plasticity, including the expression of complex cognitive processes. This is afforded for in part by the dynamic adaptations occurring at inhibitory synapses, which show great heterogeneity both in terms of upstream signaling and downstream effector mechanisms. Single-particle tracking and live imaging have revealed that complex receptor-scaffold interactions critically determine adaptations at GABAergic synapses. Super-resolution imaging studies have shown that protein interactions at synaptic sites contribute to nano-scale scaffold re-arrangements through post-translational modifications (PTMs), facilitating receptor and scaffold recruitment to synaptic sites. Additionally, plasticity mechanisms may be affected by the protein composition at individual synapses and the type of pre-synaptic input. This mini-review article examines recent discoveries of plasticity mechanisms that are operational within GABAergic synapses and discusses their contribution towards functional heterogeneity in inhibitory neurotransmission.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA