Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38879771

RESUMEN

Mild Cognitive Impairment (MCI) is swiftly emerging as a prevalent clinical concern within the elderly demographic. Willoughby spearheaded the pioneering investigation into the evolution of memory decline spanning from the age of 20 to 70. Employing a computerized substitution examination, he pinpointed a zenith in memory prowess at the age of 22, signifying the shift from infancy, succeeded by a gradual decline in later years in 1929. Cognitive impairment impacts various facets, encompassing cognition, memory, perceptual acuity, and linguistic proficiency. Compelling evidence indicates that genetic, dietary, and metabolic factors influence the trajectory of cognitive decline in this patient cohort. In addition to the widely recognized influence of the Mediterranean diet on cognitive function, numerous studies have delved into the potential impact of diverse phytochemicals on cognitive deterioration. Many of these compounds are renowned for their inflammation reducer or free-radical scavenger properties, coupled with their commendable acceptability and defense profiles. Phytochemicals sourced from medicinal plants play an essential role in upholding the intricate chemical equilibrium of the brain by modulating receptors linked to crucial inhibitory neurotransmitters. Across the annals of historical medicinal traditions, a multitude of plants have been cataloged for their efficacy in mitigating cognitive disorders. This study presents a concise examination of distinct medicinal herbs, highlighting their neuroprotective phytochemical components such as fatty acids, phenols, alkaloids, flavonoids, saponins, terpenes, and beyond. The principal objective of this inquiry is to meticulously inspect and provide discernment into the extant evidence concerning phytochemicals exhibiting clinically demonstrable effects on cognitive decline.

2.
Chem Biodivers ; : e202400642, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822644

RESUMEN

New 2-(4-benzothiazol-2-yl-phenoxy)-1-(3,5-diphenyl-4,5-dihydro-pyrazol-1-yl)-ethanones (9a-o) have been designed and synthesized. The antiepileptic potential of the synthesized compounds has been tested by following standard animal screening models which include maximal electroshock (MES) and subcutaneous pentylenetetrazole (scPTZ) models. The study concluded that compounds 9c, 9d, 9f, 9i, 9n, and 9o possessed good antiepileptic potential when compared with standard drugs like carbamazepine and phenytoin. The results of the rotarod performance test also established them without any neurotoxicity. The motor impairment test yielded that the synthesized compounds are also good antidepressants. In-silico studies have been performed to determine the eligibility of synthesized compounds as orally administered molecules and interactions with the target proteins. The result of in-silico studies reinforced results obtained by in vivo study of the synthesized compounds along with their possible mechanism of antiepileptic action i.e. via inhibiting voltage-gated sodium channels (VGSCs) and gamma-aminobutyric acid-A receptor.

3.
Sci Rep ; 14(1): 7243, 2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538702

RESUMEN

This research explores the eco-friendly synthesis of silver nanoparticles (AgNPs) using Cassia occidentalis L. seed extract. Various analytical techniques, including UV-visible spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDX), were employed for comprehensive characterization. The UV-visible spectra revealed a distinct peak at 425 nm, while the seed extract exhibited peaks at 220 and 248 nm, indicating the presence of polyphenols and phytochemicals. High-resolution TEM unveiled spherical and oval-shaped AgNPs with diameters ranging from 6.44 to 28.50 nm. The SEM exhibiting a spherical shape and a polydisperse nature, thus providing insights into the morphology of the AgNPs. EDX analysis confirmed the presence of silver atoms at 10.01% in the sample. XRD results unequivocally confirm the crystalline nature of the AgNPs suspension, thereby providing valuable insights into their structural characteristics and purity. The antioxidant properties of AgNPs, C. occidentalis seed extract, and butylated hydroxytoluene (BHT) were assessed, revealing IC50 values of 345, 500, and 434 µg/mL, respectively. Antibacterial evaluation against Bacillus subtilis, Staphylococcus aureus, and Escherichia coli demonstrated heightened sensitivity of bacteria to AgNPs compared to AgNO3. Standard antibiotics, tetracycline, and ciprofloxacin, acting as positive controls, exhibited substantial antibacterial efficacy. The green-synthesized AgNPs displayed potent antibacterial activity, suggesting their potential as a viable alternative to conventional antibiotics for combating pathogenic bacterial infections. Furthermore, potential biomedical applications of AgNPs were thoroughly discussed.


Asunto(s)
Nanopartículas del Metal , Senna , Plata/farmacología , Plata/química , Antioxidantes/farmacología , Antioxidantes/química , Nanopartículas del Metal/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antibacterianos/química , Espectrometría por Rayos X , Semillas , Difracción de Rayos X , Escherichia coli , Bacillus subtilis , Espectroscopía Infrarroja por Transformada de Fourier
4.
3 Biotech ; 14(1): 20, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38144392

RESUMEN

This study outlines the synthesis of biogenic copper oxide nanoparticles (CuONPs) using an extract derived from Cassia fistula Linn (Cf) leaves through a green synthesis approach. Characterization of the synthesized CfBio-CuONPs was carried out using UV- VIS, FTIR, DLS, XRD, and TEM studies. The CfBio-CuONPs exhibited a prominent peak at 272 nm in UV-VIS spectroscopy, and XRD measurements confirmed their crystalline nature. The FTIR spectrum of CfBio-CuONPs revealed the presence of functional groups such as O-H and aromatic groups. TEM analysis confirmed that the CfBio-CuONPs were predominantly spherical with diameters ranging from 15 to 25 nm. Subsequently, the antibacterial potential of CfBio-CuONPs was evaluated against four pathogenic bacteria, including Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis, and Bacillus subtilis. Among these, B. subtilis exhibited the highest zone of inhibition (26.93 ± 2.01 mm), followed by E. coli (24.25 ± 1.04 mm), P. aeruginosa (23.98 ± 0.97 mm), and S. epidermidis (22.97 ± 1.20 mm). CfBio-CuONPs demonstrated maximum antioxidant activity (78 ± 1.54%) at a dose-dependent concentration of 2000 µg/ml. Furthermore, in vitro toxicity assessment using the toxtrak test indicated that CfBio-CuONPs exhibited a significantly stronger toxic effect value/PI against E. coli (93.52%) compared to P. aeruginosa (92.65%), B. subtilis (91.25%), and S. epidermidis (82.89%). These results underscore the notable toxicity of CfBio-CuONPs against E. coli, surpassing that against other bacteria and conventional antibiotics. This study highlights the potential utility of CfBio-CuONPs for eradicating pathogenic microorganisms and suggests potential implications for ecotoxicology. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03869-5.

7.
Front Plant Sci ; 14: 1101943, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36895868

RESUMEN

Castor (Ricinus communis L.) is an important nonedible industrial crop that produces oil, which is used in the production of medicines, lubricants, and other products. However, the quality and quantity of castor oil are critical factors that can be degraded by various insect pest attacks. The traditional method of identifying the correct category of pests required a significant amount of time and expertise. To solve this issue, automatic insect pest detection methods combined with precision agriculture can help farmers in providing adequate support for sustainable agriculture development. For accurate predictions, the recognition system requires a sufficient amount of data from a real-world situation, which is not always available. In this regard, data augmentation is a popular technique used for data enrichment. The research conducted in this investigation established an insect pest dataset of common castor pests. This paper proposes a hybrid manipulation-based approach for data augmentation to solve the issue of the lack of a suitable dataset for effective vision-based model training. The deep convolutional neural networks VGG16, VGG19, and ResNet50 are then adopted to analyze the effects of the proposed augmentation method. The prediction results show that the proposed method addresses the challenges associated with adequate dataset size and significantly improves overall performance when compared to previous methods.

8.
Cells ; 11(18)2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36139367

RESUMEN

Stem cells are a well-known autologous pluripotent cell source, having excellent potential to develop into specialized cells, such as brain, skin, and bone marrow cells. The oral cavity is reported to be a rich source of multiple types of oral stem cells, including the dental pulp, mucosal soft tissues, periodontal ligament, and apical papilla. Oral stem cells were useful for both the regeneration of soft tissue components in the dental pulp and mineralized structure regeneration, such as bone or dentin, and can be a viable substitute for traditionally used bone marrow stem cells. In recent years, several studies have reported that plant extracts or compounds promoted the proliferation, differentiation, and survival of different oral stem cells. This review is carried out by following the PRISMA guidelines and focusing mainly on the effects of bioactive compounds on oral stem cell-mediated dental, bone, and neural regeneration. It is observed that in recent years studies were mainly focused on the utilization of oral stem cell-mediated regeneration of bone or dental mesenchymal cells, however, the utility of bioactive compounds on oral stem cell-mediated regeneration requires additional assessment beyond in vitro and in vivo studies, and requires more randomized clinical trials and case studies.


Asunto(s)
Células Madre Mesenquimatosas , Células Madre , Células de la Médula Ósea , Células Madre Mesenquimatosas/metabolismo , Ligamento Periodontal , Extractos Vegetales/metabolismo
9.
Water Environ Res ; 93(11): 2727-2739, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34415655

RESUMEN

The present study utilized Aspergillus spp. for the synthesis of silver nanoparticles (AgNPs); the developed AgNPs were categorized using analytical techniques, that is, ultraviolet-visible (UV-vis) spectrophotometer, Zeta-potential, dynamic light scattering (DLS), and transmission electron microscopy (TEM). A sharp peak of 463 nm highlighted the synthesis of AgNPs; further Zeta-potential of -16 mV indicates stability of synthesized AgNPs. The TEM micrograph showed spherical and hexagonal shapes of synthesized AgNPs of 6-25 nm. The photocatalytic activity of fungal-mediated AgNPs was evaluated for degradation of reactive yellow dye in the concentration range of 20-100 mg L-1 . The results showed efficient degradation of dye using AgNPs in short span of time. For antibacterial activity, synthesized AgNPs, antibiotic, and AgNPs + antibiotic were tested. As per results, the zone of inhibition (ZOI) of AgNPs showed the values of 13 and 10 mm for Escherichia coli and Staphylococcus aureus, respectively. Further, the ZOI of penicillin highlighted the values of 18 and 17 mm for E. coli and S. aureus, respectively. When AgNPs and penicillin were used in combination, a clear synergistic effect was observed; the ZOI showed 0.49- and 0.36-fold increase in area against E. coli and S. aureus, respectively, in comparison with penicillin or AgNPs alone. Further, the leftover biomass (retentate biomass) was used to decolorize the reactive yellow dye at different initial concentration ranging from 20 to 100 mg L-1 . It was observed that 1 g L-1 retentate biomass (BR ) can effectively remove 82%-100% dye at 20 and 100 mg L-1 initial dye concentration. Results also indicated that with increase in initial reactive dye concentration from 20 to 100 mg L-1 , the decolorization capacity of retentate biomass (BR ) (at 0.2 g L-1 ) decreased from 79.2% to 32.3%. However, the use of AgNPs synthesized leftover fungal biomass can be a good option for up taking the additional dyes/contaminants, and also as leftover biomass can be utilized effectively, it can prove to be an excellent approach for environment safety. As the literature studies did not mentioned the further use of retentate biomass, the present study provides an excellent approach for further research on this aspect. PRACTITIONER POINTS: Synthesis of AgNPs from Aspergillus spp. and characterized with the help of a U.V-vis spectrophotometer, a zeta potential, DLS and TEM. The developed AgNPs were used for antibacterial and dye degradation activity. The left over (retentate) fungal biomass was used further for additional dye degradation activity.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Antibacterianos/farmacología , Biomasa , Colorantes , Escherichia coli , Hongos , Plata , Staphylococcus aureus
10.
Int J Biol Macromol ; 179: 586-600, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33705837

RESUMEN

The indispensable role of Beta-site amyloid precursor protein cleaving enzyme-1 (BACE1) in Amyloid beta (Aß) plaques generation and Aß-mediated synaptic dysfunctions makes it a crucial target for therapeutic intervention in Alzheimer's disease (AD). In order to find out the potential inhibitors of BACE1, the present study focused on five phytochemicals from Pueraria tuberosa, namely, daidzin, genistin, mangiferin, puerarin, and tuberosin. A molecular docking study showed that all five phytochemicals presented the strongest BACE1 inhibition. Integrated molecular dynamics simulations and free energy calculations demonstrated that all five natural compounds have stable and favorable energies causing strong binding with the pocket site of BACE1 on 50 ns. All these molecules also passed Lipinski's rule of five. To validate the molecular modeling based findings, we primarily targeted the cognitive decline associated with BACE1 expression in AD flies with P. tuberosa. Significant improvement in cognitive decline was observed in AD flies in different behavioral assays such as Larval crawling assay (16.38%), Larval light preference assay (26.39%), Climbing assay (32.97%), Cold sensitivity assay (43.6%), and Thermal sensitivity assay (44.42%). The present findings suggest that P. tuberosa may be considered as a promising dietary supplement that can significantly ameliorate cognitive decline caused by BACE1 in Alzheimer's disease (AD).


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Disfunción Cognitiva/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Isoflavonas/farmacología , Fitoquímicos/farmacología , Animales , Drosophila melanogaster , Humanos , Pueraria/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...