Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
2.
Mod Pathol ; 34(2): 264-279, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33051600

RESUMEN

Subependymal giant-cell astrocytomas (SEGAs) are slow-growing brain tumors that are a hallmark feature seen in 5-10% of patients with Tuberous Sclerosis Complex (TSC). Though histologically benign, they can cause serious neurologic symptoms, leading to death if untreated. SEGAs consistently show biallelic loss of TSC1 or TSC2. Herein, we aimed to define other somatic events beyond TSC1/TSC2 loss and identify potential transcriptional drivers that contribute to SEGA formation. Paired tumor-normal whole-exome sequencing was performed on 21 resected SEGAs from 20 TSC patients. Pathogenic variants in TSC1/TSC2 were identified in 19/21 (90%) SEGAs. Copy neutral loss of heterozygosity (size range: 2.2-46 Mb) was seen in 76% (16/21) of SEGAs (44% chr9q and 56% chr16p). An average of 1.4 other somatic variants (range 0-7) per tumor were identified, unlikely of pathogenic significance. Whole transcriptome RNA-sequencing analyses revealed 190 common differentially expressed genes in SEGA (n = 16, 13 from a prior study) in pairwise comparison to each of: low grade diffuse gliomas (n = 530) and glioblastoma (n = 171) from The Cancer Genome Atlas (TCGA) consortium, ganglioglioma (n = 10), TSC cortical tubers (n = 15), and multiple normal tissues. Among these, homeobox transcription factors (TFs) HMX3, HMX2, VAX1, SIX3; and TFs IRF6 and EOMES were all expressed >12-fold higher in SEGAs (FDR/q-value < 0.05). Immunohistochemistry supported the specificity of IRF6, VAX1, SIX3 for SEGAs in comparison to other tumor entities and normal brain. We conclude that SEGAs have an extremely low somatic mutation rate, suggesting that TSC1/TSC2 loss is sufficient to drive tumor growth. The unique and highly expressed SEGA-specific TFs likely reflect the neuroepithelial cell of origin, and may also contribute to the transcriptional and epigenetic state that enables SEGA growth following two-hit loss of TSC1 or TSC2 and mTORC1 activation.


Asunto(s)
Astrocitoma/genética , Neoplasias Encefálicas/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Adolescente , Astrocitoma/metabolismo , Neoplasias Encefálicas/metabolismo , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Tasa de Mutación , Transcriptoma , Adulto Joven
3.
Genet Med ; 21(11): 2639-2643, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31160751

RESUMEN

PURPOSE: To examine the prevalence and spectrum of mosaic variant allele frequency (MVAF) in tuberous sclerosis complex (TSC) patients with low-level mosaicism and correlate genetic findings with clinical features and transmission risk. METHODS: Massively parallel sequencing was performed on 39 mosaic TSC patients with 170 different tissue samples. RESULTS: TSC mosaic patients (MVAF: 0-10%, median 1.7% in blood DNA) had a milder and distinct clinical phenotype in comparison with other TSC series, with similar facial angiofibromas (92%) and kidney angiomyolipomas (83%), and fewer seizures, cortical tubers, and multiple other manifestations (p < 0.0001 for six features). MVAF of TSC1/TSC2 pathogenic variants was highly variable in different tissue samples. Remarkably, skin lesions were the most reliable tissue for variant identification, and 6 of 39 (15%) patients showed no evidence of the variant in blood. Semen analysis showed absence of the variant in 3 of 5 mosaic men. The expected distribution of MVAF in comparison with that observed here suggests that there is a considerable number of individuals with low-level mosaicism for a TSC2 pathogenic variant who are not recognized clinically. CONCLUSION: Our findings provide information on variability in MVAF and risk of transmission that has broad implications for other mosaic genetic disorders.


Asunto(s)
Esclerosis Tuberosa/epidemiología , Esclerosis Tuberosa/genética , Adulto , Transmisión de Enfermedad Infecciosa/estadística & datos numéricos , Femenino , Genotipo , Humanos , Masculino , Mosaicismo , Mutación , Fenotipo , Prevalencia , Factores de Riesgo , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteínas Supresoras de Tumor/genética , Estados Unidos
4.
Genet Med ; 21(11): 2594-2604, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31114024

RESUMEN

PURPOSE: To determine if mosaic tuberous sclerosis complex (TSC) can be stratified into subtypes that correspond with prognosis and extent of disease. METHODS: Next-generation sequencing of skin tumor and other samples was used to identify patients with mosaic pathogenic variants in TSC1 or TSC2. Extent of disease, onset age, and family history of TSC were determined through retrospective analysis of patient records. RESULTS: The median number of disease findings and age at penetrance differed between mosaic patients with asymmetrically distributed facial angiofibromas (4 findings, 24 years, n = 7), mosaic patients with bilaterally symmetric facial angiofibromas (8 findings, 10 years, n = 12), and germline TSC patients (10 findings, 4 years, n = 29). Cutaneous and internal organ involvement positively correlated in mosaic (R = 0.62, p = 0.005), but not germline (R = -0.24, p = 0.24) TSC. Variant allele fraction (VAF) in the blood (range: 0-19%) positively correlated with the number of major features (R = 0.55, p = 0.028). Five had a TSC2 variant identified in the skin that was below detection in the blood. One of 12 children from a mosaic parent had TSC. CONCLUSION: The phenotype of mosaic TSC ranged from mild to indistinguishable from germline disease. Patients with mosaicism and asymmetric facial angiofibromas exhibited fewer findings, later onset, and lower VAF in the blood.


Asunto(s)
Esclerosis Tuberosa/clasificación , Esclerosis Tuberosa/genética , Adulto , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Masculino , Persona de Mediana Edad , Mosaicismo , Mutación/genética , Fenotipo , Estudios Retrospectivos , Neoplasias Cutáneas/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteínas Supresoras de Tumor/genética
5.
Eur Respir J ; 53(6)2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31000673

RESUMEN

INTRODUCTION: Lymphangioleiomyomatosis (LAM) occurs either associated with tuberous sclerosis complex (TSC) or as sporadic disease (S-LAM). Risk factors for development of S-LAM are unknown. We hypothesised that DNA sequence variants outside of TSC2/TSC1 might be associated with susceptibility for S-LAM and performed a genome-wide association study (GWAS). METHODS: Genotyped and imputed data on 5 426 936 single nucleotide polymorphisms (SNPs) in 426 S-LAM subjects were compared, using conditional logistic regression, with similar data from 852 females from COPDGene in a matched case-control design. For replication studies, genotypes for 196 non-Hispanic White female S-LAM subjects were compared with three different sets of controls. RNA sequencing and immunohistochemistry analyses were also performed. RESULTS: Two noncoding genotyped SNPs met genome-wide significance: rs4544201 and rs2006950 (p=4.2×10-8 and 6.1×10-9, respectively), which are in the same 35 kb linkage disequilibrium block on chromosome 15q26.2. This association was replicated in an independent cohort. NR2F2 (nuclear receptor subfamily 2 group F member 2), a nuclear receptor and transcription factor, was the only nearby protein-coding gene. NR2F2 expression was higher by RNA sequencing in one abdominal LAM tumour and four kidney angiomyolipomas, a LAM-related tumour, compared with all cancers from The Cancer Genome Atlas. Immunohistochemistry showed strong nuclear expression in both LAM and angiomyolipoma tumours. CONCLUSIONS: SNPs on chromosome 15q26.2 are associated with S-LAM, and chromatin and expression data suggest that this association may occur through effects on NR2F2 expression, which potentially plays an important role in S-LAM development.


Asunto(s)
Factor de Transcripción COUP II/genética , Neoplasias Renales/genética , Neoplasias Pulmonares/genética , Linfangioleiomiomatosis/genética , Anciano , Anciano de 80 o más Años , Secuencia de Bases , Estudios de Casos y Controles , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Internacionalidad , Modelos Logísticos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple
7.
J Clin Invest ; 127(1): 349-364, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27918305

RESUMEN

Tuberous sclerosis complex (TSC) is an autosomal dominant tumor-suppressor gene syndrome caused by inactivating mutations in either TSC1 or TSC2, and the TSC protein complex is an essential regulator of mTOR complex 1 (mTORC1). Patients with TSC develop hypomelanotic macules (white spots), but the molecular mechanisms underlying their formation are not fully characterized. Using human primary melanocytes and a highly pigmented melanoma cell line, we demonstrate that reduced expression of either TSC1 or TSC2 causes reduced pigmentation through mTORC1 activation, which results in hyperactivation of glycogen synthase kinase 3ß (GSK3ß), followed by phosphorylation of and loss of ß-catenin from the nucleus, thereby reducing expression of microphthalmia-associated transcription factor (MITF), and subsequent reductions in tyrosinase and other genes required for melanogenesis. Genetic suppression or pharmacological inhibition of this signaling cascade at multiple levels restored pigmentation. Importantly, primary melanocytes isolated from hypomelanotic macules from 6 patients with TSC all exhibited reduced TSC2 protein expression, and 1 culture showed biallelic mutation in TSC2, one of which was germline and the second acquired in the melanocytes of the hypomelanotic macule. These findings indicate that the TSC/mTORC1/AKT/GSK3ß/ß-catenin/MITF axis plays a central role in regulating melanogenesis. Interventions that enhance or diminish mTORC1 activity or other nodes in this pathway in melanocytes could potentially modulate pigment production.


Asunto(s)
Melaninas/biosíntesis , Melanocitos/metabolismo , Complejos Multiproteicos/metabolismo , Transducción de Señal , Pigmentación de la Piel , Serina-Treonina Quinasas TOR/metabolismo , Esclerosis Tuberosa/metabolismo , Adolescente , Adulto , Alelos , Línea Celular Tumoral , Femenino , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Melaninas/genética , Melanocitos/patología , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Persona de Mediana Edad , Complejos Multiproteicos/genética , Mutación , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/genética , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/patología , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
8.
PLoS Genet ; 12(8): e1006242, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27494029

RESUMEN

Renal angiomyolipoma is a kidney tumor in the perivascular epithelioid (PEComa) family that is common in patients with Tuberous Sclerosis Complex (TSC) and Lymphangioleiomyomatosis (LAM) but occurs rarely sporadically. Though histologically benign, renal angiomyolipoma can cause life-threatening hemorrhage and kidney failure. Both angiomyolipoma and LAM have mutations in TSC2 or TSC1. However, the frequency and contribution of other somatic events in tumor development is unknown. We performed whole exome sequencing in 32 resected tumor samples (n = 30 angiomyolipoma, n = 2 LAM) from 15 subjects, including three with TSC. Two germline and 22 somatic inactivating mutations in TSC2 were identified, and one germline TSC1 mutation. Twenty of 32 (62%) samples showed copy neutral LOH (CN-LOH) in TSC2 or TSC1 with at least 8 different LOH regions, and 30 of 32 (94%) had biallelic loss of either TSC2 or TSC1. Whole exome sequencing identified a median of 4 somatic non-synonymous coding region mutations (other than in TSC2/TSC1), a mutation rate lower than nearly all other cancer types. Three genes with mutations were known cancer associated genes (BAP1, ARHGAP35 and SPEN), but they were mutated in a single sample each, and were missense variants with uncertain functional effects. Analysis of sixteen angiomyolipomas from a TSC subject showed both second hit point mutations and CN-LOH in TSC2, many of which were distinct, indicating that they were of independent clonal origin. However, three tumors had two shared mutations in addition to private somatic mutations, suggesting a branching evolutionary pattern of tumor development following initiating loss of TSC2. Our results indicate that TSC2 and less commonly TSC1 alterations are the primary essential driver event in angiomyolipoma/LAM, whereas other somatic mutations are rare and likely do not contribute to tumor development.


Asunto(s)
Angiomiolipoma/genética , Neoplasias Renales/genética , Linfangioleiomiomatosis/genética , Proteínas Supresoras de Tumor/genética , Adulto , Angiomiolipoma/patología , Carcinogénesis/genética , Exoma/genética , Femenino , Mutación de Línea Germinal , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias Renales/patología , Pérdida de Heterocigocidad/genética , Linfangioleiomiomatosis/patología , Masculino , Mutación , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa
9.
Clin Cancer Res ; 22(10): 2445-2452, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26831717

RESUMEN

PURPOSE: We examined the hypothesis that mutations in mTOR pathway genes are associated with response to rapalogs in metastatic renal cell carcinoma (mRCC). EXPERIMENTAL DESIGN: We studied a cohort of mRCC patients who were treated with mTOR inhibitors with distinct clinical outcomes. Tumor DNA from 79 subjects was successfully analyzed for mutations using targeted next-generation sequencing of 560 cancer genes. Responders were defined as those with partial response (PR) by RECIST v1.0 or stable disease with any tumor shrinkage for 6 months or longer. Nonresponders were defined as those with disease progression during the first 3 months of therapy. Fisher exact test assessed the association between mutation status in mTOR pathway genes and treatment response. RESULTS: Mutations in MTOR, TSC1, or TSC2 were more common in responders, 12 (28%) of 43, than nonresponders, 4 (11%) of 36 (P = 0.06). Mutations in TSC1 or TSC2 alone were also more common in responders, 9 (21%), than nonresponders, 2(6%), (P = 0.05). Furthermore, 5 (42%) of 12 subjects with PR had mutations in MTOR, TSC1, or TSC2 compared with 4 (11%) of 36 nonresponders (P = 0.03). Eight additional non-mTOR pathway genes were found to be mutated in at least 4 of 79 tumors (5%); none were associated positively with response. CONCLUSIONS: In this cohort of mRCC patients, mutations in MTOR, TSC1, or TSC2 were more common in patients who experienced clinical benefit from rapalogs than in those who progressed. However, a substantial fraction of responders (24 of 43, 56%) had no mTOR pathway mutation identified. Clin Cancer Res; 22(10); 2445-52. ©2016 AACRSee related commentary by Voss and Hsieh, p. 2320.


Asunto(s)
Carcinoma de Células Renales/tratamiento farmacológico , Neoplasias Renales/tratamiento farmacológico , Mutación/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Serina-Treonina Quinasas TOR/genética , Proteínas Supresoras de Tumor/genética , Anciano , Carcinoma de Células Renales/genética , Estudios de Cohortes , ADN de Neoplasias/genética , Femenino , Humanos , Neoplasias Renales/genética , Masculino , Persona de Mediana Edad , Transducción de Señal/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa
11.
PLoS Genet ; 11(11): e1005637, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26540169

RESUMEN

Tuberous sclerosis complex (TSC) is an autosomal dominant tumor suppressor gene syndrome due to germline mutations in either TSC1 or TSC2. 10-15% of TSC individuals have no mutation identified (NMI) after thorough conventional molecular diagnostic assessment. 53 TSC subjects who were NMI were studied using next generation sequencing to search for mutations in these genes. Blood/saliva DNA including parental samples were available from all subjects, and skin tumor biopsy DNA was available from six subjects. We identified mutations in 45 of 53 subjects (85%). Mosaicism was observed in the majority (26 of 45, 58%), and intronic mutations were also unusually common, seen in 18 of 45 subjects (40%). Seventeen (38%) mutations were seen at an allele frequency < 5%, five at an allele frequency < 1%, and two were identified in skin tumor biopsies only, and were not seen at appreciable frequency in blood or saliva DNA. These findings illuminate the extent of mosaicism in TSC, indicate the importance of full gene coverage and next generation sequencing for mutation detection, show that analysis of TSC-related tumors can increase the mutation detection rate, indicate that it is not likely that a third TSC gene exists, and enable provision of genetic counseling to the substantial population of TSC individuals who are currently NMI.


Asunto(s)
Intrones , Mosaicismo , Mutación , Proteínas Supresoras de Tumor/genética , Humanos , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa
12.
Acta Neuropathol Commun ; 3: 48, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-26220190

RESUMEN

INTRODUCTION: Tuberous sclerosis complex (TSC) is a genetic disease resulting from mutation in TSC1 or TSC2 and subsequent hyperactivation of mammalian Target of Rapamycin (mTOR). Common TSC features include brain lesions, such as cortical tubers and subependymal giant cell astrocytomas (SEGAs). However, the current treatment with mTOR inhibitors has critical limitations. We aimed to identify new targets for TSC pharmacotherapy. RESULTS: The results of our shRNA screen point to glutamate-cysteine ligase catalytic subunit (GCLC), a key enzyme in glutathione synthesis, as a contributor to TSC-related phenotype. GCLC inhibition increased cellular stress and reduced mTOR hyperactivity in TSC2-depleted neurons and SEGA-derived cells. Moreover, patients' brain tubers showed elevated GCLC and stress markers expression. Finally, GCLC inhibition led to growth arrest and death of SEGA-derived cells. CONCLUSIONS: We describe GCLC as a part of redox adaptation in TSC, needed for overgrowth and survival of mutant cells, and provide a potential novel target for SEGA treatment.


Asunto(s)
Encéfalo/patología , Glutamato-Cisteína Ligasa/metabolismo , Neuronas/metabolismo , Esclerosis Tuberosa/patología , Adolescente , Animales , Butionina Sulfoximina/farmacología , Células COS , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Niño , Chlorocebus aethiops , Inhibidores Enzimáticos/farmacología , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inmunosupresores/farmacología , Masculino , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/farmacología , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Adulto Joven
13.
Hum Mol Genet ; 24(7): 1836-42, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25432535

RESUMEN

Tuberous sclerosis complex (TSC) is a genetic disorder characterized by seizures and tumor formation in multiple organs, mainly in the brain, skin, kidney, lung and heart. Renal cell carcinoma (RCC) occurs in ∼3% of TSC patients, and typically develops at age <50. Here we describe genetic findings in two TSC patients with multiple renal tumors, each of whom had the germline mutation TSC2 p.R905Q. The first (female) TSC patient had a left followed by a right nephrectomy at ages 24 and 27. Both kidneys showed multifocal TSC-associated papillary RCC (PRCC). Targeted, next-generation sequencing (NGS) analysis of TSC2 in five tumors (four from the left kidney, one from the right) showed loss of heterozygosity in one tumor, and four different TSC2 point mutations (p.E1351*, p.R1032*, p.R1713H, c.4178_4179delCT) in the other four samples. Only one of the 11 other tumors available from this patient had one of the TSC2 second hit mutations identified. Whole-exome analysis of the five tumors identified a very small number of additional mutated genes, with an average of 3.4 nonsilent coding, somatic mutations per tumor, none of which were seen in >1 tumor. The second (male) TSC patient had bilateral partial nephrectomies (both at age 36), with similar findings of multifocal PRCC. NGS analysis of TSC2 in two of these tumors identified a second hit mutation c.2355+1G>T in one sample that was not seen in other tumors. In conclusion, we report the first detailed genetic analysis of RCCs in TSC patients. Molecular studies indicate that tumors developed independently due to various second hit events, suggesting that these patients experienced a 'shower' of second hit mutations in TSC2 during kidney development leading to this severe phenotype.


Asunto(s)
Carcinoma de Células Renales/genética , Mutación , Esclerosis Tuberosa/genética , Proteínas Supresoras de Tumor/genética , Adolescente , Adulto , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Niño , Preescolar , Femenino , Humanos , Riñón/crecimiento & desarrollo , Riñón/metabolismo , Riñón/patología , Pérdida de Heterocigocidad , Masculino , Esclerosis Tuberosa/metabolismo , Esclerosis Tuberosa/patología , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/metabolismo , Adulto Joven
14.
Hum Mol Genet ; 23(8): 2023-9, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24271014

RESUMEN

Tuberous sclerosis complex (TSC) is characterized by the formation of tumors in multiple organs and is caused by germline mutation in one of two tumor suppressor genes, TSC1 and TSC2. As for other tumor suppressor gene syndromes, the mechanism of somatic second-hit events in TSC tumors is unknown. We grew fibroblast-like cells from 29 TSC skin tumors from 22 TSC subjects and identified germline and second-hit mutations in TSC1/TSC2 using next-generation sequencing. Eighteen of 22 (82%) subjects had a mutation identified, and 8 of the 18 (44%) subjects were mosaic with mutant allele frequencies of 0 to 19% in normal tissue DNA. Multiple tumors were available from four patients, and in each case, second-hit mutations in TSC2 were distinct indicating they arose independently. Most remarkably, 7 (50%) of the 14 somatic point mutations were CC>TT ultraviolet 'signature' mutations, never seen as a TSC germline mutation. These occurred exclusively in facial angiofibroma tumors from sun-exposed sites. These results implicate UV-induced DNA damage as a cause of second-hit mutations and development of TSC facial angiofibromas and suggest that measures to limit UV exposure in TSC children and adults should reduce the frequency and severity of these lesions.


Asunto(s)
Angiofibroma/etiología , Neoplasias Faciales/etiología , Mutación/genética , Neoplasias Cutáneas/etiología , Luz Solar/efectos adversos , Esclerosis Tuberosa/genética , Proteínas Supresoras de Tumor/genética , Adolescente , Adulto , Angiofibroma/patología , Western Blotting , Niño , Preescolar , Neoplasias Faciales/patología , Femenino , Fibroblastos/patología , Estudios de Seguimiento , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Persona de Mediana Edad , Pronóstico , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neoplasias Cutáneas/patología , Esclerosis Tuberosa/complicaciones , Esclerosis Tuberosa/patología , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Adulto Joven
15.
BMC Bioinformatics ; 11: 104, 2010 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-20181266

RESUMEN

BACKGROUND: Affymetrix GeneChip microarrays are popular platforms for expression profiling in two types of studies: detection of differential expression computed by p-values of t-test and estimation of fold change between analyzed groups. There are many different preprocessing algorithms for summarizing Affymetrix data. The main goal of these methods is to remove effects of non-specific hybridization, and to optimally combine information from multiple probes annotated to the same transcript. The methods are benchmarked by comparison with reference methods, such as quantitative reverse-transcription PCR (qRT-PCR). RESULTS: We present a comprehensive analysis of agreement between Affymetrix GeneChip and qRT-PCR results. We analyzed the influence of filtering by fraction Present calls introduced by J.N. McClintick and H.J. Edenberg (2006) and 2 mapping procedures: updated probe sets definitions proposed by Dai et al. (2005) and our "naive mapping" method. Because of evolution of genome sequence annotations since the time when microarrays were designed, we also studied the effect of the annotation release date. These comparisons were prepared for 6 popular preprocessing algorithms (MAS5, PLIER, RMA, GC-RMA, MBEI, and MBEImm) in the 2 above-mentioned types of studies. We used data sets from 6 independent biological experiments. As a measure of reproducibility of microarray and qRT-PCR values, we used linear and rank correlation coefficients. CONCLUSIONS: We show that filtering by fraction Present calls increased correlations for all 6 preprocessing algorithms. We observed the difference in performance of PM-MM and PM-only methods: using MM probes increased correlations in fold change studies, but PM-only methods proved to perform better in detection of differential expression. We recommend using GC-RMA for detection of differential expression and PLIER for estimation of fold change. The use of the more recent annotation improves the results in both types of studies, encouraging re-analysis of old data.


Asunto(s)
Algoritmos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...