Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Methods ; 21(4): 723-734, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38504114

RESUMEN

The ENCODE Consortium's efforts to annotate noncoding cis-regulatory elements (CREs) have advanced our understanding of gene regulatory landscapes. Pooled, noncoding CRISPR screens offer a systematic approach to investigate cis-regulatory mechanisms. The ENCODE4 Functional Characterization Centers conducted 108 screens in human cell lines, comprising >540,000 perturbations across 24.85 megabases of the genome. Using 332 functionally confirmed CRE-gene links in K562 cells, we established guidelines for screening endogenous noncoding elements with CRISPR interference (CRISPRi), including accurate detection of CREs that exhibit variable, often low, transcriptional effects. Benchmarking five screen analysis tools, we find that CASA produces the most conservative CRE calls and is robust to artifacts of low-specificity single guide RNAs. We uncover a subtle DNA strand bias for CRISPRi in transcribed regions with implications for screen design and analysis. Together, we provide an accessible data resource, predesigned single guide RNAs for targeting 3,275,697 ENCODE SCREEN candidate CREs with CRISPRi and screening guidelines to accelerate functional characterization of the noncoding genome.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Humanos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Sistemas CRISPR-Cas/genética , Genoma , Células K562 , ARN Guía de Sistemas CRISPR-Cas
2.
Cell Syst ; 14(9): 746-763.e5, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37543039

RESUMEN

Despite growing knowledge of the functions of individual human transcriptional effector domains, much less is understood about how multiple effector domains within the same protein combine to regulate gene expression. Here, we measure transcriptional activity for 8,400 effector domain combinations by recruiting them to reporter genes in human cells. In our assay, weak and moderate activation domains synergize to drive strong gene expression, whereas combining strong activators often results in weaker activation. In contrast, repressors combine linearly and produce full gene silencing, and repressor domains often overpower activation domains. We use this information to build a synthetic transcription factor whose function can be tuned between repression and activation independent of recruitment to target genes by using a small-molecule drug. Altogether, we outline the basic principles of how effector domains combine to regulate gene expression and demonstrate their value in building precise and flexible synthetic biology tools. A record of this paper's transparent peer review process is included in the supplemental information.


Asunto(s)
Proteínas Represoras , Transcripción Genética , Humanos , Transcripción Genética/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica/genética , Genes Reporteros
3.
Science ; 381(6658): eade6289, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37561850

RESUMEN

Skin color, one of the most diverse human traits, is determined by the quantity, type, and distribution of melanin. In this study, we leveraged the light-scattering properties of melanin to conduct a genome-wide screen for regulators of melanogenesis. We identified 169 functionally diverse genes that converge on melanosome biogenesis, endosomal transport, and gene regulation, of which 135 represented previously unknown associations with pigmentation. In agreement with their melanin-promoting function, the majority of screen hits were up-regulated in melanocytes from darkly pigmented individuals. We further unraveled functions of KLF6 as a transcription factor that regulates melanosome maturation and pigmentation in vivo, and of the endosomal trafficking protein COMMD3 in modulating melanosomal pH. Our study reveals a plethora of melanin-promoting genes, with broad implications for human variation, cell biology, and medicine.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Factor 6 Similar a Kruppel , Melaninas , Melanocitos , Melanosomas , Pigmentación de la Piel , Humanos , Melaninas/biosíntesis , Melaninas/genética , Melanocitos/metabolismo , Melanosomas/metabolismo , Pigmentación de la Piel/genética , Estudio de Asociación del Genoma Completo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factor 6 Similar a Kruppel/genética , Factor 6 Similar a Kruppel/metabolismo , Endosomas/metabolismo , Animales , Ratones , Línea Celular Tumoral
4.
Cell Syst ; 14(6): 482-500.e8, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37348463

RESUMEN

Viruses encode transcriptional regulatory proteins critical for controlling viral and host gene expression. Given their multifunctional nature and high sequence divergence, it is unclear which viral proteins can affect transcription and which specific sequences contribute to this function. Using a high-throughput assay, we measured the transcriptional regulatory potential of over 60,000 protein tiles across ∼1,500 proteins from 11 coronaviruses and all nine human herpesviruses. We discovered hundreds of transcriptional effector domains, including a conserved repression domain in all coronavirus Spike homologs, dual activation-repression domains in viral interferon regulatory factors (VIRFs), and an activation domain in six herpesvirus homologs of the single-stranded DNA-binding protein that we show is important for viral replication and late gene expression in Kaposi's sarcoma-associated herpesvirus (KSHV). For the effector domains we identified, we investigated their mechanisms via high-throughput sequence and chemical perturbations, pinpointing sequence motifs essential for function. This work massively expands viral protein annotations, serving as a springboard for studying their biological and health implications and providing new candidates for compact gene regulation tools.


Asunto(s)
Herpesvirus Humano 8 , Humanos , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Replicación Viral/genética , Regulación de la Expresión Génica
5.
Nature ; 616(7956): 365-372, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37020022

RESUMEN

Human gene expression is regulated by more than 2,000 transcription factors and chromatin regulators1,2. Effector domains within these proteins can activate or repress transcription. However, for many of these regulators we do not know what type of effector domains they contain, their location in the protein, their activation and repression strengths, and the sequences that are necessary for their functions. Here, we systematically measure the effector activity of more than 100,000 protein fragments tiling across most chromatin regulators and transcription factors in human cells (2,047 proteins). By testing the effect they have when recruited at reporter genes, we annotate 374 activation domains and 715 repression domains, roughly 80% of which are new and have not been previously annotated3-5. Rational mutagenesis and deletion scans across all the effector domains reveal aromatic and/or leucine residues interspersed with acidic, proline, serine and/or glutamine residues are necessary for activation domain activity. Furthermore, most repression domain sequences contain sites for small ubiquitin-like modifier (SUMO)ylation, short interaction motifs for recruiting corepressors or are structured binding domains for recruiting other repressive proteins. We discover bifunctional domains that can both activate and repress, some of which dynamically split a cell population into high- and low-expression subpopulations. Our systematic annotation and characterization of effector domains provide a rich resource for understanding the function of human transcription factors and chromatin regulators, engineering compact tools for controlling gene expression and refining predictive models of effector domain function.


Asunto(s)
Regulación de la Expresión Génica , Mutagénesis , Dominios Proteicos , Factores de Transcripción , Transcripción Genética , Humanos , Cromatina/genética , Cromatina/metabolismo , Genes Reporteros/genética , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Dominios Proteicos/genética , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Sumoilación
6.
Genome Biol ; 24(1): 85, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085898

RESUMEN

Detecting and mitigating off-target activity is critical to the practical application of CRISPR-mediated genome and epigenome editing. While numerous methods have been developed to map Cas9 binding specificity genome-wide, they are generally time-consuming and/or expensive, and not applicable to catalytically dead CRISPR enzymes. We have developed CasKAS, a rapid, inexpensive, and facile assay for identifying off-target CRISPR enzyme binding and cleavage by chemically mapping the unwound single-stranded DNA structures formed upon binding of a sgRNA-loaded Cas9 protein. We demonstrate this method in both in vitro and in vivo contexts.


Asunto(s)
Sistemas CRISPR-Cas , ADN de Cadena Simple , ADN de Cadena Simple/genética , Genoma , Proteína 9 Asociada a CRISPR/genética , Epigenoma , Edición Génica/métodos
7.
Nat Biotechnol ; 41(4): 488-499, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36217031

RESUMEN

Large serine recombinases (LSRs) are DNA integrases that facilitate the site-specific integration of mobile genetic elements into bacterial genomes. Only a few LSRs, such as Bxb1 and PhiC31, have been characterized to date, with limited efficiency as tools for DNA integration in human cells. In this study, we developed a computational approach to identify thousands of LSRs and their DNA attachment sites, expanding known LSR diversity by >100-fold and enabling the prediction of their insertion site specificities. We tested their recombination activity in human cells, classifying them as landing pad, genome-targeting or multi-targeting LSRs. Overall, we achieved up to seven-fold higher recombination than Bxb1 and genome integration efficiencies of 40-75% with cargo sizes over 7 kb. We also demonstrate virus-free, direct integration of plasmid or amplicon libraries for improved functional genomics applications. This systematic discovery of recombinases directly from microbial sequencing data provides a resource of over 60 LSRs experimentally characterized in human cells for large-payload genome insertion without exposed DNA double-stranded breaks.


Asunto(s)
Ingeniería Genética , Integrasas , Humanos , Genoma Humano , Transfección , Biblioteca Genómica
8.
Cell Syst ; 13(12): 950-973, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36549273

RESUMEN

To elucidate principles operating in native biological systems and to develop novel biotechnologies, synthetic biology aims to build and integrate synthetic gene circuits within native transcriptional networks. The utility of synthetic gene circuits for cell engineering relies on the ability to control the expression of all constituent transgene components. Transgene silencing, defined as the loss of expression over time, persists as an obstacle for engineering primary cells and stem cells with transgenic cargos. In this review, we highlight the challenge that transgene silencing poses to the robust engineering of mammalian cells, outline potential molecular mechanisms of silencing, and present approaches for preventing transgene silencing. We conclude with a perspective identifying future research directions for improving the performance of synthetic gene circuits.


Asunto(s)
Redes Reguladoras de Genes , Ingeniería Genética , Animales , Transgenes/genética , Comunicación Celular , Mamíferos/genética
9.
PLoS Negl Trop Dis ; 16(10): e0010894, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36315503

RESUMEN

CRISPR gene drives could revolutionize the control of infectious diseases by accelerating the spread of engineered traits that limit parasite transmission in wild populations. Gene drive technology in mollusks has received little attention despite the role of freshwater snails as hosts of parasitic flukes causing 200 million annual cases of schistosomiasis. A successful drive in snails must overcome self-fertilization, a common feature of host snails which could prevents a drive's spread. Here we developed a novel population genetic model accounting for snails' mixed mating and population dynamics, susceptibility to parasite infection regulated by multiple alleles, fitness differences between genotypes, and a range of drive characteristics. We integrated this model with an epidemiological model of schistosomiasis transmission to show that a snail population modification drive targeting immunity to infection can be hindered by a variety of biological and ecological factors; yet under a range of conditions, disease reduction achieved by chemotherapy treatment of the human population can be maintained with a drive. Alone a drive modifying snail immunity could achieve significant disease reduction in humans several years after release. These results indicate that gene drives, in coordination with existing public health measures, may become a useful tool to reduce schistosomiasis burden in selected transmission settings with effective CRISPR construct design and evaluation of the genetic and ecological landscape.


Asunto(s)
Tecnología de Genética Dirigida , Esquistosomiasis , Animales , Humanos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Esquistosomiasis/epidemiología , Caracoles/genética , Caracoles/parasitología , Agua Dulce , China/epidemiología
10.
Hum Gene Ther ; 32(23-24): 1450-1456, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34415793

RESUMEN

Infants and older adults are especially vulnerable to infection by respiratory syncytial virus (RSV), which can cause significant illness and irreparable damage to the lower respiratory tract and for which an effective vaccine is not readily available. Palivizumab, a recombinant monoclonal antibody (mAb), is an approved therapeutic for RSV infection for use in high-risk infants only. Due to several logistical issues, including cost of goods and scale-up limitations, palivizumab is not approved for other populations that are vulnerable to severe RSV infections, such as older adults. In this study, we demonstrate that intranasal delivery of adeno-associated virus serotype 9 (AAV9) vector expressing palivizumab or motavizumab, a second-generation version of palivizumab, significantly reduced the viral load in the lungs of the BALB/c mouse model of RSV infection. Notably, we demonstrate that AAV9 vector-mediated prophylaxis against RSV was effective despite the presence of serum-circulating neutralizing AAV9 antibodies. These findings substantiate the feasibility of repeatedly administering AAV9 vector to the airway for seasonal prophylaxis against RSV, thereby expanding the application of vectored delivery of mAbs as an effective prophylaxis strategy against various airborne viruses.


Asunto(s)
Dependovirus , Infecciones por Virus Sincitial Respiratorio , Animales , Antivirales , Dependovirus/genética , Pulmón , Ratones , Ratones Endogámicos BALB C , Palivizumab/uso terapéutico , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Infecciones por Virus Sincitial Respiratorio/prevención & control
11.
Cell ; 183(7): 2020-2035.e16, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33326746

RESUMEN

Thousands of proteins localize to the nucleus; however, it remains unclear which contain transcriptional effectors. Here, we develop HT-recruit, a pooled assay where protein libraries are recruited to a reporter, and their transcriptional effects are measured by sequencing. Using this approach, we measure gene silencing and activation for thousands of domains. We find a relationship between repressor function and evolutionary age for the KRAB domains, discover that Homeodomain repressor strength is collinear with Hox genetic organization, and identify activities for several domains of unknown function. Deep mutational scanning of the CRISPRi KRAB maps the co-repressor binding surface and identifies substitutions that improve stability/silencing. By tiling 238 proteins, we find repressors as short as ten amino acids. Finally, we report new activator domains, including a divergent KRAB. These results provide a resource of 600 human proteins containing effectors and demonstrate a scalable strategy for assigning functions to protein domains.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Sistemas CRISPR-Cas/genética , Femenino , Silenciador del Gen , Genes Reporteros , Células HEK293 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Células K562 , Lentivirus/fisiología , Anotación de Secuencia Molecular , Mutación/genética , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas/genética , Dominios Proteicos , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Reproducibilidad de los Resultados , Transcripción Genética , Dedos de Zinc
12.
PLoS Negl Trop Dis ; 13(12): e0007833, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31856157

RESUMEN

Schistosomiasis is one of the most important and widespread neglected tropical diseases (NTD), with over 200 million people infected in more than 70 countries; the disease has nearly 800 million people at risk in endemic areas. Although mass drug administration is a cost-effective approach to reduce occurrence, extent, and severity of the disease, it does not provide protection to subsequent reinfection. Interventions that target the parasites' intermediate snail hosts are a crucial part of the integrated strategy required to move toward disease elimination. The recent revolution in gene drive technology naturally leads to questions about whether gene drives could be used to efficiently spread schistosome resistance traits in a population of snails and whether gene drives have the potential to contribute to reduced disease transmission in the long run. Responsible implementation of gene drives will require solutions to complex challenges spanning multiple disciplines, from biology to policy. This Review Article presents collected perspectives from practitioners of global health, genome engineering, epidemiology, and snail/schistosome biology and outlines strategies for responsible gene drive technology development, impact measurements of gene drives for schistosomiasis control, and gene drive governance. Success in this arena is a function of many factors, including gene-editing specificity and efficiency, the level of resistance conferred by the gene drive, how fast gene drives may spread in a metapopulation over a complex landscape, ecological sustainability, social equity, and, ultimately, the reduction of infection prevalence in humans. With combined efforts from across the broad global health community, gene drives for schistosomiasis control could fortify our defenses against this devastating disease in the future.


Asunto(s)
Reservorios de Enfermedades , Resistencia a la Enfermedad , Transmisión de Enfermedad Infecciosa/prevención & control , Tecnología de Genética Dirigida/métodos , Esquistosomiasis/prevención & control , Caracoles/genética , Caracoles/parasitología , Animales , Humanos
13.
Nat Commun ; 10(1): 4063, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31492858

RESUMEN

Pooled CRISPR-Cas9 screens are a powerful method for functionally characterizing regulatory elements in the non-coding genome, but off-target effects in these experiments have not been systematically evaluated. Here, we investigate Cas9, dCas9, and CRISPRi/a off-target activity in screens for essential regulatory elements. The sgRNAs with the largest effects in genome-scale screens for essential CTCF loop anchors in K562 cells were not single guide RNAs (sgRNAs) that disrupted gene expression near the on-target CTCF anchor. Rather, these sgRNAs had high off-target activity that, while only weakly correlated with absolute off-target site number, could be predicted by the recently developed GuideScan specificity score. Screens conducted in parallel with CRISPRi/a, which do not induce double-stranded DNA breaks, revealed that a distinct set of off-targets also cause strong confounding fitness effects with these epigenome-editing tools. Promisingly, filtering of CRISPRi libraries using GuideScan specificity scores removed these confounded sgRNAs and enabled identification of essential regulatory elements.


Asunto(s)
Sistemas CRISPR-Cas , Regulación Neoplásica de la Expresión Génica , Genoma Humano/genética , ARN Guía de Kinetoplastida/genética , Elementos Reguladores de la Transcripción/genética , Biología Computacional/métodos , Epigénesis Genética/genética , Epigenómica/métodos , Edición Génica/métodos , Células HEK293 , Humanos , Células K562
14.
CRISPR J ; 2: 172-185, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31225747

RESUMEN

Considerable effort has been devoted to developing a comprehensive understanding of CRISPR nuclease specificity. In silico predictions and multiple genome-wide cellular and biochemical approaches have revealed a basic understanding of the Cas9 specificity profile. However, none of these approaches has delivered a model that allows accurate prediction of a CRISPR nuclease's ability to cleave a site based entirely on the sequence of the guide RNA (gRNA) and the target. We describe a library-based biochemical assay that directly reports the cleavage efficiency of a particular Cas9-guide complex by measuring both uncleaved and cleaved target molecules over a wide range of mismatched library members. We applied our assay using libraries of targets to evaluate the specificity of Staphylococcus aureus Cas9 under a variety of experimental conditions. Surprisingly, our data show an unexpectedly high variation in the random gRNA:target DNA mismatch tolerance when cleaving with different gRNAs, indicating guide-intrinsic mismatch permissiveness and challenging the assumption of universal specificity models. We use data generated by our assay to create the first off-target, guide-specific cleavage models. The barcoded libraries of targets approach is rapid, highly modular, and capable of generating protein- and guide-specific models, as well as illuminating the biophysics of Cas9 binding versus cutting. These models may be useful in identifying potential off-targets, and the gRNA-intrinsic nature of mismatch tolerance argues for coupling these specificity models with orthogonal methods for a more complete assessment of gRNA specificity.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Staphylococcus aureus/enzimología , Sistemas CRISPR-Cas , ADN/metabolismo , Especificidad por Sustrato
15.
Nat Commun ; 9(1): 3542, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30154463

RESUMEN

The original HTML version of this Article incorrectly listed an affiliation of Josh Tycko as 'Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA', instead of the correct 'Present address: Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA'. It also incorrectly listed an affiliation of this author as 'Present address: Arrakis Therapeutics, 35 Gatehouse Dr., Waltham, MA, 02451, USA'.The original HTML version incorrectly listed an affiliation of Luis A. Barrera as 'Present address: Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA', instead of the correct 'Present address: Arrakis Therapeutics, 35 Gatehouse Dr., Waltham, MA 02451, USA'.Finally, the original HTML version incorrectly omitted an affiliation of Nicholas C. Huston: 'Present address: Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA'.This has been corrected in the HTML version of the Article. The PDF version was correct from the time of publication.

16.
Nat Commun ; 9(1): 2962, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-30054474

RESUMEN

Therapeutic genome editing with Staphylococcus aureus Cas9 (SaCas9) requires a rigorous understanding of its potential off-target activity in the human genome. Here we report a high-throughput screening approach to measure SaCas9 genome editing variation in human cells across a large repertoire of 88,692 single guide RNAs (sgRNAs) paired with matched or mismatched target sites in a synthetic cassette. We incorporate randomized barcodes that enable whitelisting of correctly synthesized molecules for further downstream analysis, in order to circumvent the limitation of oligonucleotide synthesis errors. We find SaCas9 sgRNAs with 21-mer or 22-mer spacer sequences are generally more active, although high efficiency 20-mer spacers are markedly less tolerant of mismatches. Using this dataset, we developed an SaCas9 specificity model that performs robustly in ranking off-target sites. The barcoded pairwise library screen enabled high-fidelity recovery of guide-target relationships, providing a scalable framework for the investigation of CRISPR enzyme properties and general nucleic acid interactions.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Edición Génica/métodos , Biblioteca de Genes , Staphylococcus aureus/genética , Proteínas Bacterianas/genética , Secuencia de Bases , Sistemas CRISPR-Cas , Clonación Molecular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Genes Bacterianos/genética , Células HEK293 , Humanos , ARN Guía de Kinetoplastida/genética
17.
Mol Cell ; 68(1): 26-43, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28985508

RESUMEN

The past several years have seen an explosion in development of applications for the CRISPR-Cas9 system, from efficient genome editing, to high-throughput screening, to recruitment of a range of DNA and chromatin-modifying enzymes. While homology-directed repair (HDR) coupled with Cas9 nuclease cleavage has been used with great success to repair and re-write genomes, recently developed base-editing systems present a useful orthogonal strategy to engineer nucleotide substitutions. Base editing relies on recruitment of cytidine deaminases to introduce changes (rather than double-stranded breaks and donor templates) and offers potential improvements in efficiency while limiting damage and simplifying the delivery of editing machinery. At the same time, these systems enable novel mutagenesis strategies to introduce sequence diversity for engineering and discovery. Here, we review the different base-editing platforms, including their deaminase recruitment strategies and editing outcomes, and compare them to other CRISPR genome-editing technologies. Additionally, we discuss how these systems have been applied in therapeutic, engineering, and research settings. Lastly, we explore future directions of this emerging technology.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Reparación del ADN , Endonucleasas/genética , Edición Génica/métodos , Genoma , Animales , Evolución Molecular Dirigida , Endonucleasas/metabolismo , Células Eucariotas/citología , Células Eucariotas/metabolismo , Ingeniería Genética , Humanos , Mutagénesis , Nucleótidos/genética , Nucleótidos/metabolismo , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo
18.
Nat Genet ; 49(11): 1602-1612, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28945252

RESUMEN

The challenge of linking intergenic mutations to target genes has limited molecular understanding of human diseases. Here we show that H3K27ac HiChIP generates high-resolution contact maps of active enhancers and target genes in rare primary human T cell subtypes and coronary artery smooth muscle cells. Differentiation of naive T cells into T helper 17 cells or regulatory T cells creates subtype-specific enhancer-promoter interactions, specifically at regions of shared DNA accessibility. These data provide a principled means of assigning molecular functions to autoimmune and cardiovascular disease risk variants, linking hundreds of noncoding variants to putative gene targets. Target genes identified with HiChIP are further supported by CRISPR interference and activation at linked enhancers, by the presence of expression quantitative trait loci, and by allele-specific enhancer loops in patient-derived primary cells. The majority of disease-associated enhancers contact genes beyond the nearest gene in the linear genome, leading to a fourfold increase in the number of potential target genes for autoimmune and cardiovascular diseases.


Asunto(s)
Enfermedades Autoinmunes/genética , Enfermedades Cardiovasculares/genética , ADN Intergénico/genética , Elementos de Facilitación Genéticos , Mutación , Regiones Promotoras Genéticas , Alelos , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Diferenciación Celular , Cromatina , Inmunoprecipitación de Cromatina/métodos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN Intergénico/metabolismo , Genoma Humano , Histonas/genética , Histonas/metabolismo , Humanos , Células K562 , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/inmunología , Cultivo Primario de Células , Sitios de Carácter Cuantitativo , Linfocitos T Colaboradores-Inductores/citología , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/inmunología
19.
Mol Cell ; 63(3): 355-70, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27494557

RESUMEN

Advances in the development of delivery, repair, and specificity strategies for the CRISPR-Cas9 genome engineering toolbox are helping researchers understand gene function with unprecedented precision and sensitivity. CRISPR-Cas9 also holds enormous therapeutic potential for the treatment of genetic disorders by directly correcting disease-causing mutations. Although the Cas9 protein has been shown to bind and cleave DNA at off-target sites, the field of Cas9 specificity is rapidly progressing, with marked improvements in guide RNA selection, protein and guide engineering, novel enzymes, and off-target detection methods. We review important challenges and breakthroughs in the field as a comprehensive practical guide to interested users of genome editing technologies, highlighting key tools and strategies for optimizing specificity. The genome editing community should now strive to standardize such methods for measuring and reporting off-target activity, while keeping in mind that the goal for specificity should be continued improvement and vigilance.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , ADN/metabolismo , Endonucleasas/metabolismo , Edición Génica/métodos , Marcación de Gen/métodos , Genómica/métodos , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/genética , Biología Computacional , ADN/genética , Endonucleasas/genética , Humanos , Cinética , Mutación , Ingeniería de Proteínas , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Especificidad por Sustrato
20.
ACS Synth Biol ; 5(7): 781-5, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27111289

RESUMEN

We report a toolbox for exploring the modular tuning of genetic circuits, which has been specifically optimized for widespread deployment in STEM environments through a combination of bacterial strain engineering and distributable hardware development. The transfer functions of 16 genetic switches, programmed to express a GFP reporter under the regulation of the (acyl-homoserine lactone) AHL-sensitive luxR transcriptional activator, can be parametrically tuned by adjusting high/low degrees of transcriptional, translational, and post-translational processing. Strains were optimized to facilitate daily large-scale preparation and reliable performance at room temperature in order to eliminate the need for temperature controlled apparatuses, which are both cost-limiting and space-constraining. The custom-designed, automated, and web-enabled fluorescence documentation system allows time-lapse imaging of AHL-induced GFP expression on bacterial plates with real-time remote data access, thereby requiring trainees to only be present for experimental setup. When coupled with mathematical models in agreement with empirical data, this toolbox expands the scalability and scope of reliable synthetic biology experiments for STEM training.


Asunto(s)
Redes Reguladoras de Genes , Biología Sintética/educación , Biología Sintética/métodos , Imagen de Lapso de Tiempo/métodos , Acil-Butirolactonas/metabolismo , Aliivibrio fischeri/genética , Regulación Bacteriana de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Laboratorios , Percepción de Quorum/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...