Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chembiochem ; : e202400242, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777792

RESUMEN

Accumulating evidence suggests that G protein-coupled receptors (GPCRs) can exist and function in homodimer and heterodimer forms. The adenosine A1 receptor (A1R) has been shown to form both homodimers and heterodimers, but there is a lack of chemical tools to study these dimeric receptor populations. This work describes the synthesis and pharmacological evaluation of a novel class of bivalent GPCR chemical tools, where each ligand moiety of the bivalent compound contains a sulfonyl fluoride covalent warhead designed to be capable of simultaneously reacting with each A1R of an A1R homodimer. The novel compounds were characterised using radioligand binding assays, including washout assays, and functionally in cAMP assays. The bivalent dicovalent compounds were competitive A1R antagonists and showed evidence of covalent binding and simultaneous binding across an A1R homodimer. Greater selectivity for A1R over the adenosine A3 receptor was observed for bivalent dicovalent over the equivalent monovalent compounds, indicating subtype selectivity can be achieved with dual occupation by a bivalent dicovalent ligand.

2.
Cell Chem Biol ; 31(4): 683-698.e7, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38151019

RESUMEN

Mycobacterial bioenergetics is a validated target space for antitubercular drug development. Here, we identify BB2-50F, a 6-substituted 5-(N,N-hexamethylene)amiloride derivative as a potent, multi-targeting bioenergetic inhibitor of Mycobacterium tuberculosis. We show that BB2-50F rapidly sterilizes both replicating and non-replicating cultures of M. tuberculosis and synergizes with several tuberculosis drugs. Target identification experiments, supported by docking studies, showed that BB2-50F targets the membrane-embedded c-ring of the F1Fo-ATP synthase and the catalytic subunit (substrate-binding site) of succinate dehydrogenase. Biochemical assays and metabolomic profiling showed that BB2-50F inhibits succinate oxidation, decreases the activity of the tricarboxylic acid (TCA) cycle, and results in succinate secretion from M. tuberculosis. Moreover, we show that the lethality of BB2-50F under aerobic conditions involves the accumulation of reactive oxygen species. Overall, this study identifies BB2-50F as an effective inhibitor of M. tuberculosis and highlights that targeting multiple components of the mycobacterial respiratory chain can produce fast-acting antimicrobials.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Succinato Deshidrogenasa/metabolismo , Succinato Deshidrogenasa/farmacología , Antituberculosos/química , Tuberculosis/tratamiento farmacológico , Adenosina Trifosfato , Inhibidores Enzimáticos/farmacología , Succinatos
3.
ACS Med Chem Lett ; 13(10): 1663-1669, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36262396

RESUMEN

A revised total synthesis of aurachin D (1a), an isoprenoid quinolone alkaloid that targets Mycobacterium tuberculosis (Mtb) cytochrome bd (cyt-bd) oxidase, was accomplished using an oxazoline ring-opening reaction. The ring opening enabled access to a range of electron-poor analogues, while electron-rich analogues could be prepared using the Conrad-Limpach reaction. The aryl-substituted and side-chain-modified aurachin D analogues were screened for inhibition of Mtb cyt-bd oxidase and growth inhibition of Mtb. Nanomolar inhibition of Mtb cyt-bd oxidase was observed for the shorter-chain analogue 1d (citronellyl side chain) and the aryl-substituted analogues 1g/1k (fluoro substituent at C6/C7), 1t/1v (hydroxy substituent at C5/C6) and 1u/1w/1x (methoxy substituent at C5/C6/C7). Aurachin D and the analogues did not inhibit growth of nonpathogenic Mycobacterium smegmatis, but the citronellyl (1d) and 6-fluoro-substituted (1g) inhibitors from the Mtb cyt-bd oxidase assay displayed moderate growth inhibition against pathogenic Mtb (MIC = 4-8 µM).

4.
RSC Med Chem ; 13(5): 497-510, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35694688

RESUMEN

X-ray crystallography and cryogenic electronic microscopy have provided significant advancement in the knowledge of GPCR structure and have allowed the rational design of GPCR ligands. The class A GPCRs cannabinoid receptor type 1 and type 2 are implicated in many pathophysiological processes and thus rational design of drug and tool compounds is of great interest. Recent structural insight into cannabinoid receptors has already led to a greater understanding of ligand binding sites and receptor residues that likely contribute to ligand selectivity. Herein, classes of heterocyclic covalent cannabinoid receptor ligands are reviewed in light of the recent advances in structural knowledge of cannabinoid receptors, with particular discussion regarding covalent ligand selectivity and rationale design.

5.
J Med Chem ; 65(9): 6496-6498, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35507419

RESUMEN

The coronavirus disease (COVID-19) pandemic has highlighted the ability of scientists to quickly react to the immense challenge presented to the world. The orally available 3CL protease inhibitor S-217622 is currently progressing through clinical trials and its discovery via structure-based drug design, screening and optimization by Shionogi and Hokkaido University is presented here.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Antivirales/farmacología , Antivirales/uso terapéutico , Proteasas 3C de Coronavirus , Humanos , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/uso terapéutico
6.
Commun Biol ; 5(1): 166, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35210534

RESUMEN

Increasing antimicrobial resistance compels the search for next-generation inhibitors with differing or multiple molecular targets. In this regard, energy conservation in Mycobacterium tuberculosis has been clinically validated as a promising new drug target for combatting drug-resistant strains of M. tuberculosis. Here, we show that HM2-16F, a 6-substituted derivative of the FDA-approved drug amiloride, is an anti-tubercular inhibitor with bactericidal properties comparable to the FDA-approved drug bedaquiline (BDQ; Sirturo®) and inhibits the growth of bedaquiline-resistant mutants. We show that HM2-16F weakly inhibits the F1Fo-ATP synthase, depletes ATP, and affects the entry of acetyl-CoA into the Krebs cycle. HM2-16F synergizes with the cytochrome bcc-aa3 oxidase inhibitor Q203 (Telacebec) and co-administration with Q203 sterilizes in vitro cultures in 14 days. Synergy with Q203 occurs via direct inhibition of the cytochrome bd oxidase by HM2-16F. This study shows that amiloride derivatives represent a promising discovery platform for targeting energy generation in drug-resistant tuberculosis.


Asunto(s)
Mycobacterium tuberculosis , Adenosina Trifosfato , Amilorida/farmacología , Antituberculosos/farmacología , Citocromos , Complejo IV de Transporte de Electrones/metabolismo , Mycobacterium tuberculosis/metabolismo , Oxidorreductasas
7.
Pharmaceutics ; 14(2)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35214080

RESUMEN

Nanoparticle drug delivery systems have emerged as a promising strategy for overcoming limitations of antimicrobial drugs such as stability, bioavailability, and insufficient exposure to the hard-to-reach bacterial drug targets. Although size is a vital colloidal feature of nanoparticles that governs biological interactions, the absence of well-defined size control technology has hampered the investigation of optimal nanoparticle size for targeting bacterial cells. Previously, we identified a lead antichlamydial compound JO146 against the high temperature requirement A (HtrA) protease, a promising antibacterial target involved in protein quality control and virulence. Here, we reveal that JO146 was active against Helicobacter pylori with a minimum bactericidal concentration of 18.8-75.2 µg/mL. Microfluidic technology using a design of experiments approach was utilized to formulate JO146-loaded poly(lactic-co-glycolic) acid nanoparticles and explore the effect of the nanoparticle size on drug delivery. JO146-loaded nanoparticles of three different sizes (90, 150, and 220 nm) were formulated with uniform particle size distribution and drug encapsulation efficiency of up to 25%. In in vitro microdilution inhibition assays, 90 nm nanoparticles improved the minimum bactericidal concentration of JO146 two-fold against H. pylori compared to the free drug alone, highlighting that controlled engineering of nanoparticle size is important in drug delivery optimization.

8.
Eur J Med Chem ; 232: 114172, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35158154

RESUMEN

Tissue transglutaminase (TG2) is a multifunctional protein that catalyses protein crosslinking in the extracellular matrix, and functions as an intracellular G-protein. While both activities have been associated with human diseases, its role as a G-protein has been linked to cancer stem cell survival and maintenance of a metastatic phenotype. Recently we have shown that targeted covalent inhibitors (TCIs) can react selectively with the enzyme active site of TG2, to allosterically abolish its ability to bind GTP. In the present work, we focused on the variation of the N-terminal group of these peptidomimetic inhibitors, in order to enhance efficiency, while reducing log P and the number of rotatable bonds. This approach led to the synthesis and evaluation of 41 novel inhibitors, some of which had greatly improved efficiency and affinity for TG2 (e.g. TCI 72: KI = 1.0 µM, kinact/KI = 4.4 × 105 M-1 min-1). Molecular modelling provided a hypothetical binding mode for these TCIs. The most efficient inhibitors were evaluated further and shown to have excellent isozyme selectivity, to block GTP binding, and to have improved pharmacokinetic properties, as expected. Their biological activity was also confirmed, in a cellular invasion assay, although with less potency than expected.


Asunto(s)
Peptidomiméticos , Transglutaminasas , Inhibidores Enzimáticos/química , Peptidomiméticos/farmacología , Proteína Glutamina Gamma Glutamiltransferasa 2 , Relación Estructura-Actividad , Transglutaminasas/química , Transglutaminasas/genética , Transglutaminasas/metabolismo
9.
J Fungi (Basel) ; 8(1)2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35050009

RESUMEN

The fungal cytochrome P450 lanosterol 14α-demethylase (CYP51) is required for the biosynthesis of fungal-specific ergosterol and is the target of azole antifungal drugs. Despite proven success as a clinical target for azole antifungals, there is an urgent need to develop next-generation antifungals that target CYP51 to overcome the resistance of pathogenic fungi to existing azole drugs, toxic adverse reactions and drug interactions due to human drug-metabolizing CYPs. Candida parapsilosis is a readily transmitted opportunistic fungal pathogen that causes candidiasis in health care environments. In this study, we have characterised wild type C. parapsilosis CYP51 and its clinically significant, resistance-causing point mutation Y132F by expressing these enzymes in a Saccharomyces cerevisiae host system. In some cases, the enzymes were co-expressed with their cognate NADPH-cytochrome P450 reductase (CPR). Constitutive expression of CpCYP51 Y132F conferred a 10- to 12-fold resistance to fluconazole and voriconazole, reduced to ~6-fold resistance for the tetrazoles VT-1161 and VT-1129, but did not confer resistance to the long-tailed triazoles. Susceptibilities were unchanged in the case of CpCPR co-expression. Type II binding spectra showed tight triazole and tetrazole binding by affinity-purified recombinant CpCYP51. We report the X-ray crystal structure of ScCYP51 in complex with VT-1129 obtained at a resolution of 2.1 Å. Structural analysis of azole-enzyme interactions and functional studies of recombinant CYP51 from C. parapsilosis have improved understanding of their susceptibility to azole drugs and will help advance structure-directed antifungal discovery.

10.
Eur J Med Chem ; 230: 114064, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35007862

RESUMEN

High temperature requirement A (HtrA) serine proteases have emerged as a novel class of antibacterial target, which are crucial in protein quality control and are involved in the pathogenesis of a wide array of bacterial infections. Previously, we demonstrated that HtrA in Chlamydia is essential for bacterial survival, replication and virulence. Here, we report a new series of proline (P2)-modified inhibitors of Chlamydia trachomatis HtrA (CtHtrA) developed by proline ring expansion and Cγ-substitutions. The structure-based drug optimization process was guided by molecular modelling and in vitro pharmacological evaluation of inhibitory potency, selectivity and cytotoxicity. Compound 25 from the first-generation 4-substituted proline analogues increased antiCtHtrA potency and selectivity over human neutrophil elastase (HNE) by approximately 6- and 12-fold, respectively, relative to the peptidic lead compound 1. Based on this compound, second-generation substituted proline residues containing 1,2,3-triazole moieties were synthesized by regioselective azide-alkyne click chemistry. Compound 49 demonstrated significantly improved antichlamydial activity in whole cell assays, diminishing the bacterial infectious progeny below the detection limit at the lowest dose tested. Compound 49 resulted in approximately 9- and 22-fold improvement in the inhibitory potency and selectivity relative to 1, respectively. To date, compound 49 is the most potent HtrA inhibitor developed against Chlamydia spp.


Asunto(s)
Prolina , Serina Proteasas , Antibacterianos/farmacología , Chlamydia trachomatis , Humanos , Péptidos , Prolina/farmacología
11.
Front Oncol ; 11: 709540, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34722257

RESUMEN

Colorectal cancer is primarily a disease of the developed world. The incidence rate has continued to increase over time, reflecting both demographic and lifestyle changes, which have resulted in genomic and epigenomic modifications. Many of the epigenetic modifications occur in genes known to be closely associated with embryonic development and cellular growth. In particular, the paired box (PAX) transcription factors are crucial for correct tissue development during embryogenesis due to their role in regulating genes involved in proliferation and cellular maintenance. In a number of cancers, including colorectal cancer, the PAX transcription factors are aberrantly expressed, driving proliferation and thus increased tumour growth. Here we have synthesized and used a small molecule PAX inhibitor, EG1, to inhibit PAX transcription factors in HCT116 colorectal cell cultures which resulted in reduced proliferation after three days of treatment. These results highlight PAX transcription factors as playing an important role in the proliferation of HCT116 colorectal cancer cells, suggesting there may be a potential therapeutic role for inhibition of PAX in limiting cancer cell growth.

12.
J Fungi (Basel) ; 7(11)2021 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-34829185

RESUMEN

Target-based azole resistance in Candida albicans involves overexpression of the ERG11 gene encoding lanosterol 14α-demethylase (LDM), and/or the presence of single or multiple mutations in this enzyme. Overexpression of Candida albicans LDM (CaLDM) Y132H I471T by the Darlington strain strongly increased resistance to the short-tailed azoles fluconazole and voriconazole, and weakly increased resistance to the longer-tailed azoles VT-1161, itraconazole and posaconazole. We have used, as surrogates, structurally aligned mutations in recombinant hexahistidine-tagged full-length Saccharomyces cerevisiae LDM6×His (ScLDM6×His) to elucidate how differential susceptibility to azole drugs is conferred by LDM of the C. albicans Darlington strain. The mutations Y140H and I471T were introduced, either alone or in combination, into ScLDM6×His via overexpression of the recombinant enzyme from the PDR5 locus of an azole hypersensitive strain of S. cerevisiae. Phenotypes and high-resolution X-ray crystal structures were determined for the surrogate enzymes in complex with representative short-tailed (voriconazole) and long-tailed (itraconazole) triazoles. The preferential high-level resistance to short-tailed azoles conferred by the ScLDM Y140H I471T mutant required both mutations, despite the I471T mutation conferring only a slight increase in resistance. Crystal structures did not detect changes in the position/tilt of the heme co-factor of wild-type ScLDM, I471T and Y140H single mutants, or the Y140H I471T double-mutant. The mutant threonine sidechain in the Darlington strain CaLDM perturbs the environment of the neighboring C-helix, affects the electronic environment of the heme, and may, via differences in closure of the neck of the substrate entry channel, increase preferential competition between lanosterol and short-tailed azole drugs.

13.
Eur J Med Chem ; 224: 113692, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34265463

RESUMEN

The obligate intracellular bacterium Chlamydia trachomatis (C. trachomatis) is responsible for the most common bacterial sexually transmitted infection and is the leading cause of preventable blindness, representing a major global health burden. While C. trachomatis infection is currently treatable with broad-spectrum antibiotics, there would be many benefits of a chlamydia-specific therapy. Previously, we have identified a small-molecule lead compound JO146 [Boc-Val-Pro-ValP(OPh)2] targeting the bacterial serine protease HtrA, which is essential in bacterial replication, virulence and survival, particularly under stress conditions. JO146 is highly efficacious in attenuating infectivity of both human (C. trachomatis) as well as koala (C. pecorum) species in vitro and in vivo, without host cell toxicity. Herein, we present our continuing efforts on optimizing JO146 by modifying the N-capping group as well as replacing the parent peptide structure with the 2-pyridone scaffold at P3/P2. The drug optimization process was guided by molecular modelling, enzyme and cell-based assays. Compound 18b from the pyridone series showed improved inhibitory activity against CtHtrA by 5-fold and selectivity over human neutrophil elastase (HNE) by 109-fold compared to JO146, indicating that 2-pyridone is a suitable bioisostere of the P3/P2 amide/proline for developing CtHtrA inhibitors. Most pyridone-based inhibitors showed superior anti-chlamydial potency to JO146 especially at lower doses (25 and 50 µM) in C. trachomatis and C. pecorum cell culture assays. Modifications of the N-capping group of the peptidyl inhibitors did not have much influence on the anti-chlamydial activities, providing opportunities for more versatile alterations and future optimization. In summary, we present 2-pyridone based analogues as a new generation of non-peptidic CtHtrA inhibitors, which hold better promise as anti-chlamydial drug candidates.


Asunto(s)
Antibacterianos/farmacología , Chlamydophila/enzimología , Péptidos/farmacología , Piridonas/farmacología , Serina Proteasas/metabolismo , Inhibidores de Serina Proteinasa/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Péptidos/síntesis química , Péptidos/química , Pseudomonas aeruginosa/efectos de los fármacos , Piridonas/química , Inhibidores de Serina Proteinasa/síntesis química , Inhibidores de Serina Proteinasa/química , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad
14.
J Med Chem ; 64(12): 8161-8178, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34120444

RESUMEN

Adenosine receptors are attractive therapeutic targets for multiple conditions, including ischemia-reperfusion injury and neuropathic pain. Adenosine receptor drug discovery efforts would be facilitated by the development of appropriate tools to assist in target validation and direct receptor visualization in different native environments. We report the development of the first bifunctional (chemoreactive and clickable) ligands for the adenosine A1 receptor (A1R) and adenosine A3 receptor (A3R) based on an orthosteric antagonist xanthine-based scaffold and on an existing structure-activity relationship. Bifunctional ligands were functional antagonists with nanomolar affinity and irreversible binding at the A1R and A3R. In-depth pharmacological profiling of these bifunctional ligands showed moderate selectivity over A2A and A2B adenosine receptors. Once bound to the receptor, ligands were successfully "clicked" with a cyanine-5 fluorophore containing the complementary "click" partner, enabling receptor detection. These bifunctional ligands are expected to aid in the understanding of A1R and A3R localization and trafficking in native cells and living systems.


Asunto(s)
Antagonistas del Receptor de Adenosina A1/farmacología , Antagonistas del Receptor de Adenosina A3/farmacología , Sondas Moleculares/farmacología , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A3/metabolismo , Xantinas/farmacología , Antagonistas del Receptor de Adenosina A1/síntesis química , Antagonistas del Receptor de Adenosina A3/síntesis química , Alquinos/química , Animales , Azidas/química , Células CHO , Química Clic , Cricetulus , Diseño de Fármacos , Colorantes Fluorescentes/química , Humanos , Ligandos , Sondas Moleculares/síntesis química , Receptor de Adenosina A1/química , Receptor de Adenosina A3/química , Xantinas/síntesis química
15.
Recent Pat Anticancer Drug Discov ; 16(4): 479-497, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33966624

RESUMEN

BACKGROUND: The design of anti-cancer therapies with high anti-tumour efficacy and reduced toxicity continues to be challenging. Anti-cancer prodrug and antibody-drug-conjugate (ADC) strategies that can specifically and efficiently deliver cytotoxic compounds to cancer cells have been used to overcome some of the challenges. The key to the success of many of these strategies is a self-immolative linker, which after activation can release the drug payload. Various types of triggerable self-immolative linkers are used in prodrugs and ADCs to improve their efficacy and safety. OBJECTIVE: Numerous patents have reported the significance of self-immolative linkers in prodrugs and ADCs in cancer treatment. Based on the recent patent literature, we summarise methods for designing the site-specific activation of non-toxic prodrugs and ADCs in order to improve selectivity for killing cancer cells. METHODS: In this review, an integrated view of the potential use of prodrugs and ADCs in cancer treatment are provided. This review presents recent patents and related publications over the past ten years uptill 2020. RESULTS: The recent patent literature has been summarised for a wide variety of self-immolative PABC linkers, which are cleaved by factors including responding to the difference between the extracellular and intracellular environments (pH, ROS, glutathione) through over-expressed enzymes (cathepsin, plasmin, ß-glucuronidase) or bioorthogonal activation. The mechanism for self-immolation involves the linker undergoing a 1,4- or 1,6-elimination (via electron cascade) or intramolecular cyclisation to release cytotoxic drug at the targeted site. CONCLUSION: This review provides the commonly used strategies from recent patent literature in the development of prodrugs based on targeted cancer therapy and antibody-drug conjugates, which show promise in therapeutic applications.


Asunto(s)
Antineoplásicos/administración & dosificación , Inmunoconjugados/administración & dosificación , Neoplasias/tratamiento farmacológico , Antineoplásicos/efectos adversos , Antineoplásicos/farmacología , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Diseño de Fármacos , Liberación de Fármacos , Humanos , Inmunoconjugados/efectos adversos , Inmunoconjugados/farmacología , Patentes como Asunto , Profármacos
16.
Biotechnol Lett ; 43(7): 1467-1473, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33891232

RESUMEN

OBJECTIVE: To change the specificity of a glutaryl-7-aminocephalosporanic acid acylase (GCA) towards N-acyl homoserine lactones (AHLs; quorum sensing signalling molecules) by site-directed mutagenesis. RESULTS: Seven residues were identified by analysis of existing crystal structures as potential determinants of substrate specificity. Site-saturation mutagenesis libraries were created for each of the seven selected positions. High-throughput activity screening of each library identified two variants-Arg255Ala, Arg255Gly-with new activities towards N-acyl homoserine lactone substrates. Structural modelling of the Arg255Gly mutation suggests that the smaller side-chain of glycine (as compared to arginine in the wild-type enzyme) avoids a key clash with the acyl group of the N-acyl homoserine lactone substrate. CONCLUSIONS: Mutation of a single amino acid residue successfully converted a GCA (with no detectable activity against AHLs) into an AHL acylase. This approach may be useful for further engineering of 'quorum quenching' enzymes.


Asunto(s)
Acil-Butirolactonas/metabolismo , Penicilina Amidasa/metabolismo , Mutación Puntual , Pseudomonas aeruginosa/crecimiento & desarrollo , Arginina/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Cristalografía por Rayos X , Regulación Bacteriana de la Expresión Génica , Modelos Moleculares , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Penicilina Amidasa/química , Penicilina Amidasa/genética , Conformación Proteica , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética , Percepción de Quorum , Especificidad por Sustrato
17.
Front Pharmacol ; 12: 638950, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33776775

RESUMEN

Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine implicated in the pathogenesis of inflammation and cancer. It is produced by various cells and circulating MIF has been identified as a biomarker for a range of diseases. Extracellular MIF mainly binds to the cluster of differentiation 74 (CD74)/CD44 to activate downstream signaling pathways. These in turn activate immune responses, enhance inflammation and can promote cancer cell proliferation and invasion. Extracellular MIF also binds to the C-X-C chemokine receptors cooperating with or without CD74 to activate chemokine response. Intracellular MIF is involved in Toll-like receptor and inflammasome-mediated inflammatory response. Pharmacological inhibition of MIF has been shown to hold great promise in treating inflammatory diseases and cancer, including small molecule MIF inhibitors targeting the tautomerase active site of MIF and antibodies that neutralize MIF. In the current review, we discuss the role of MIF signaling pathways in inflammation and cancer and summarize the recent advances of the role of MIF in experimental and clinical exocrine pancreatic diseases. We expect to provide insights into clinical translation of MIF antagonism as a strategy for treating acute pancreatitis and pancreatic cancer.

18.
Phytomedicine ; 85: 153525, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33740732

RESUMEN

BACKGROUND: Acute pancreatitis (AP) is an inflammatory disorder of the pancreas that is associated with substantial morbidity and mortality. Chaiqin chengqi decoction (CQCQD) has been proven clinically to be an effective treatment for AP for decades in West China Hospital. Quality control for CQCQD containing many hundreds of characteristic phytochemicals poses a challenge for developing robust quality assessment metrics. PURPOSE: To evaluate quality consistency of CQCQD with a multi-strategy based analytical method, identify potential quality-markers (Q-markers) based on drug properties and effect characteristics, and endeavor to establish CQCQD as a globally-accepted medicine. METHODS: A typical analysis of constitutive medicinal plant materials was performed following the Chinese Pharmacopoeia. The extraction process was optimized through an orthogonal array (L9(34)) to evaluate three levels of liquid to solid ratio, soaking time, duration of extraction, and the number of extractions. An ultra-high-performance liquid chromatography (UHPLC) fingerprinting combined with absolute quantitation of multi chemical marker compounds, coupled with similarity, hierarchical clustering analysis (HCA), and principal component analyses (PCA) were performed to evaluate 10 batches of CQCQD. On the basis of systematic analysis of fundamental features of CQCQD in treating AP, the potential Q-marker screen was proposed through detection of quality transfer and efficacy for chemical markers. UHPLC coupled with quadrupole orbitrap mass spectrometry were used to determine compounds in medicinal materials, decoctions and plasma. Network pharmacology and taurolithocholic acid 3-sulfate induced pancreatic acinar cell death were used to evaluate the correlation between chemical markers and anti-pancreatitis activity. A cerulein induced AP murine model was used to validate quality assessed CQCQD batches at clinically-equivalent dose. The effective content of chemical markers was predicted using linear regression analysis on quantitative information between validated batches and the other batches. RESULTS: The chemical markers and other physical and chemical indices in the original materials met Chinese Pharmacopoeia standards. A total of 22 co-existing fingerprint peaks were selected and the similarity varied between 0.946 and 0.990. Batch D10 possessed the highest similarity index. HCA classified the 10 batches into 2 main groups: 7 batches represented by D10 and 3 batches represented by D1. During the initial Q-marker screen stage, 22 compounds were detected in both plant materials and decoctions, while 13 compounds were identified in plasma. Network pharmacology predicted the potential targets and pathway of AP related to the 22 compounds. All 10 batches showed reduced necrosis below 60% with the best effect achieved by D10 (~40%). The spectrum-efficacy relationship analyzed by Pearson correlation analysis indicated that emodin, rhein, aloe emodin, geniposide, hesperridin, chrysin, syringin, synephrine, geniposidic acid, magnolol, physcion, sinensetin, and baicalein showed positive correlation with pancreatic acinar cell death protection. Similar to the in vitro evaluation, batch D10 significantly reduced total histopathological scores and biochemical severity indices at a clinically-equivalent dose but batch D1 did not. The content of naringin, narirutin and baicalin in batches D1, D5 and D9 consistently exceeds the upper limit of the predicted value. Eight markers whose lower limit is predicted to be close to 0 contributed less to the material basis for AP protection. CONCLUSION: Despite qualified materials used for CQCQD preparation, the clinical effect depends on appropriate content range of Q-markers. Emodin, rhein, aloe emodin, magnolol, hesperidin, synephrine, baicalein, and geniposide are considered as vital Q-markers in the primary screen. This study proposed a feasible platform for producing highly consistent batches of CQCQD in future study.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Pancreatitis/tratamiento farmacológico , Control de Calidad , Células Acinares/efectos de los fármacos , Enfermedad Aguda , Animales , Ceruletida , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/normas , Ratones , Necrosis/patología , Páncreas/efectos de los fármacos , Pancreatitis/inducido químicamente
19.
Pharmaceuticals (Basel) ; 14(2)2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33572730

RESUMEN

Androgen receptor (AR)-null prostate tumors have been observed in 11-24% of patients. Histone deacetylases (HDACs) are overexpressed in prostate tumors. Therefore, HDAC inhibitors (Jazz90 and Jazz167) were examined in AR-null prostate cancer cell lines (PC3 and DU145). Both Jazz90 and Jazz167 inhibited the growth of PC3 and DU145 cells. Jazz90 and Jazz167 were more active in PC3 cells and DU145 cells in comparison to normal prostate cells (PNT1A) and showed a 2.45- and 1.30-fold selectivity and higher cytotoxicity toward DU145 cells, respectively. Jazz90 and Jazz167 reduced HDAC activity by ~60% at 50 nM in PC3 lysates. At 4 µM, Jazz90 and Jazz167 increased acetylation in PC3 cells by 6- to 8-fold. Flow cytometry studies on the cell phase distribution demonstrated that Jazz90 causes a G0/G1 arrest in AR-null cells, whereas Jazz167 leads to a G0/G1 arrest in DU145 cells. However, apoptosis only occurred at a maximum of 7% of the total cell population following compound treatments in PC3 and DU145 cells. There was a reduction in cyclin D1 and no significant changes in bcl-2 in DU145 and PC3 cells. Overall, the results showed that Jazz90 and Jazz167 function as cytostatic HDAC inhibitors in AR-null prostate cancer cells.

20.
Eur J Immunol ; 50(5): 643-655, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31944287

RESUMEN

Mucosal-associated invariant T (MAIT) cells are innate-like T lymphocytes that are abundant in mucosal tissues and the liver where they can respond rapidly to a broad range of riboflavin producing bacterial and fungal pathogens. Neutrophils, which are recruited early to sites of infection, play a nonredundant role in pathogen clearance and are crucial for controlling infection. The interaction of these two cell types is poorly studied. Here, we investigated both the effect of neutrophils on MAIT cell activation and the effect of activated MAIT cells on neutrophils. We show that neutrophils suppress the activation of MAIT cells by a cell-contact and hydrogen peroxide dependent mechanism. Moreover, highly activated MAIT cells were able to produce high levels of TNF-α that induced neutrophil death. We therefore provide evidence for a negative regulatory feedback mechanism in which neutrophils prevent overactivation of MAIT cells and, in turn, MAIT cells limit neutrophil survival.


Asunto(s)
Comunicación Celular/inmunología , Retroalimentación Fisiológica , Inmunidad Mucosa , Células T Invariantes Asociadas a Mucosa/inmunología , Neutrófilos/inmunología , Movimiento Celular , Técnicas de Cocultivo , Escherichia coli/inmunología , Humanos , Peróxido de Hidrógeno/inmunología , Peróxido de Hidrógeno/metabolismo , Recuento de Leucocitos , Hígado/citología , Hígado/inmunología , Activación de Linfocitos , Células T Invariantes Asociadas a Mucosa/citología , Membrana Mucosa/citología , Membrana Mucosa/inmunología , Neutrófilos/citología , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...