Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
R Soc Open Sci ; 4(3): 160767, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28405363

RESUMEN

DNA has been used to construct a wide variety of nanoscale molecular devices. Inspiration for such synthetic molecular machines is frequently drawn from protein motors, which are naturally occurring and ubiquitous. However, despite the fact that rotary motors such as ATP synthase and the bacterial flagellar motor play extremely important roles in nature, very few rotary devices have been constructed using DNA. This paper describes an experimental study of the putative mechanism of a rotary DNA nanomotor, which is based on strand displacement, the phenomenon that powers many synthetic linear DNA motors. Unlike other examples of rotary DNA machines, the device described here is designed to be capable of autonomous operation after it is triggered. The experimental results are consistent with operation of the motor as expected, and future work on an enhanced motor design may allow rotation to be observed at the single-molecule level. The rotary motor concept presented here has potential applications in molecular processing, DNA computing, biosensing and photonics.

2.
Bioinspir Biomim ; 8(1): 016003, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23302298

RESUMEN

As electronic devices become increasingly complex, ensuring their reliable, fault-free operation is becoming correspondingly more challenging. It can be observed that, in spite of their complexity, biological systems are highly reliable and fault tolerant. Hence, we are motivated to take inspiration for biological systems in the design of electronic ones. In SABRE (self-healing cellular architectures for biologically inspired highly reliable electronic systems), we have designed a bio-inspired fault-tolerant hierarchical architecture for this purpose. As in biology, the foundation for the whole system is cellular in nature, with each cell able to detect faults in its operation and trigger intra-cellular or extra-cellular repair as required. At the next level in the hierarchy, arrays of cells are configured and controlled as function units in a transport triggered architecture (TTA), which is able to perform partial-dynamic reconfiguration to rectify problems that cannot be solved at the cellular level. Each TTA is, in turn, part of a larger multi-processor system which employs coarser grain reconfiguration to tolerate faults that cause a processor to fail. In this paper, we describe the details of operation of each layer of the SABRE hierarchy, and how these layers interact to provide a high systemic level of fault tolerance.


Asunto(s)
Materiales Biomiméticos , Comunicación Celular/fisiología , Electrónica/instrumentación , Animales , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA