Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Euro Surveill ; 27(43)2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36305336

RESUMEN

BackgroundTracking person-to-person SARS-CoV-2 transmission in the population is important to understand the epidemiology of community transmission and may contribute to the containment of SARS-CoV-2. Neither contact tracing nor genomic surveillance alone, however, are typically sufficient to achieve this objective.AimWe demonstrate the successful application of the integrated genomic surveillance (IGS) system of the German city of Düsseldorf for tracing SARS-CoV-2 transmission chains in the population as well as detecting and investigating travel-associated SARS-CoV-2 infection clusters.MethodsGenomic surveillance, phylogenetic analysis, and structured case interviews were integrated to elucidate two genetically defined clusters of SARS-CoV-2 isolates detected by IGS in Düsseldorf in July 2021.ResultsCluster 1 (n = 67 Düsseldorf cases) and Cluster 2 (n = 36) were detected in a surveillance dataset of 518 high-quality SARS-CoV-2 genomes from Düsseldorf (53% of total cases, sampled mid-June to July 2021). Cluster 1 could be traced back to a complex pattern of transmission in nightlife venues following a putative importation by a SARS-CoV-2-infected return traveller (IP) in late June; 28 SARS-CoV-2 cases could be epidemiologically directly linked to IP. Supported by viral genome data from Spain, Cluster 2 was shown to represent multiple independent introduction events of a viral strain circulating in Catalonia and other European countries, followed by diffuse community transmission in Düsseldorf.ConclusionIGS enabled high-resolution tracing of SARS-CoV-2 transmission in an internationally connected city during community transmission and provided infection chain-level evidence of the downstream propagation of travel-imported SARS-CoV-2 cases.


Asunto(s)
COVID-19 , Enfermedades Transmisibles Importadas , Humanos , SARS-CoV-2/genética , Viaje , Enfermedades Transmisibles Importadas/epidemiología , COVID-19/epidemiología , Filogenia , Trazado de Contacto , Alemania/epidemiología , Genómica
2.
Nat Methods ; 19(7): 845-853, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35773532

RESUMEN

16S ribosomal RNA-based analysis is the established standard for elucidating the composition of microbial communities. While short-read 16S rRNA analyses are largely confined to genus-level resolution at best, given that only a portion of the gene is sequenced, full-length 16S rRNA gene amplicon sequences have the potential to provide species-level accuracy. However, existing taxonomic identification algorithms are not optimized for the increased read length and error rate often observed in long-read data. Here we present Emu, an approach that uses an expectation-maximization algorithm to generate taxonomic abundance profiles from full-length 16S rRNA reads. Results produced from simulated datasets and mock communities show that Emu is capable of accurate microbial community profiling while obtaining fewer false positives and false negatives than alternative methods. Additionally, we illustrate a real-world application of Emu by comparing clinical sample composition estimates generated by an established whole-genome shotgun sequencing workflow with those returned by full-length 16S rRNA gene sequences processed with Emu.


Asunto(s)
Dromaiidae , Microbiota , Secuenciación de Nanoporos , Animales , Bacterias/genética , Dromaiidae/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Microbiota/genética , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN/métodos
3.
Clin Infect Dis ; 74(6): 1039-1046, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-34181711

RESUMEN

BACKGROUND: Tracing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission chains is still a major challenge for public health authorities, when incidental contacts are not recalled or are not perceived as potential risk contacts. Viral sequencing can address key questions about SARS-CoV-2 evolution and may support reconstruction of viral transmission networks by integration of molecular epidemiology into classical contact tracing. METHODS: In collaboration with local public health authorities, we set up an integrated system of genomic surveillance in an urban setting, combining a) viral surveillance sequencing, b) genetically based identification of infection clusters in the population, c) integration of public health authority contact tracing data, and d) a user-friendly dashboard application as a central data analysis platform. RESULTS: Application of the integrated system from August to December 2020 enabled a characterization of viral population structure, analysis of 4 outbreaks at a maximum care hospital, and genetically based identification of 5 putative population infection clusters, all of which were confirmed by contact tracing. The system contributed to the development of improved hospital infection control and prevention measures and enabled the identification of previously unrecognized transmission chains, involving a martial arts gym and establishing a link between the hospital to the local population. CONCLUSIONS: Integrated systems of genomic surveillance could contribute to the monitoring and, potentially, improved management of SARS-CoV-2 transmission in the population.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Trazado de Contacto , Brotes de Enfermedades/prevención & control , Genómica , Humanos , SARS-CoV-2/genética
4.
Viruses ; 10(10)2018 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-30301229

RESUMEN

Orthopoxviruses (OPVs) are diffused over the complete Eurasian continent, but previously described strains are mostly from northern Europe, and few infections have been reported from Italy. Here we present the extended genomic characterization of OPV Abatino, a novel OPV isolated in Italy from an infected Tonkean macaque, with zoonotic potential. Phylogenetic analysis based on 102 conserved OPV genes (core gene set) showed that OPV Abatino is most closely related to the Ectromelia virus species (ECTV), although placed on a separate branch of the phylogenetic tree, bringing substantial support to the hypothesis that this strain may be part of a novel OPV clade. Extending the analysis to the entire set of genes (coding sequences, CDS) further substantiated this hypothesis. In fact the genome of OPV Abatino included more CDS than ECTV; most of the extra genes (mainly located in the terminal genome regions), showed the highest similarity with cowpox virus (CPXV); however vaccinia virus (VACV) and monkeypox virus (MPXV) were the closest OPV for certain CDS. These findings suggest that OPV Abatino could be the result of complex evolutionary events, diverging from any other previously described OPV, and may indicate that previously reported cases in Italy could represent the tip of the iceberg yet to be explored.


Asunto(s)
Cercopithecidae/virología , Genoma Viral/genética , Orthopoxvirus/clasificación , Orthopoxvirus/genética , Filogenia , Animales , ADN Viral/genética , Genes Virales/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico
5.
Viruses ; 9(11)2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-29125539

RESUMEN

DNA viruses, like poxviruses, possess a highly stable genome, suggesting that adaptation of virus particles to specific cell types is not restricted to genomic changes. Cowpox viruses are zoonotic poxviruses with an extraordinarily broad host range, demonstrating their adaptive potential in vivo. To elucidate adaptation mechanisms of poxviruses, we isolated cowpox virus particles from a rat and passaged them five times in a human and a rat cell line. Subsequently, we analyzed the proteome and genome of the non-passaged virions and each passage. While the overall viral genome sequence was stable during passaging, proteomics revealed multiple changes in the virion composition. Interestingly, an increased viral fitness in human cells was observed in the presence of increased immunomodulatory protein amounts. As the only minor variant with increasing frequency during passaging was located in a viral RNA polymerase subunit and, moreover, most minor variants were found in transcription-associated genes, protein amounts were presumably regulated at transcription level. This study is the first comparative proteome analysis of virus particles before and after cell culture propagation, revealing proteomic changes as a novel poxvirus adaptation mechanism.


Asunto(s)
Adaptación Fisiológica/genética , Virus de la Viruela Vacuna/genética , Genoma Viral/genética , Proteoma/genética , Virión/química , Secuencia de Aminoácidos , Animales , Línea Celular , Virus de la Viruela Vacuna/química , ARN Polimerasas Dirigidas por ADN , Regulación de la Expresión Génica , Aptitud Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Especificidad del Huésped , Inmunomodulación , Ratas , Ratas Wistar , Análisis de Secuencia de ADN , Proteínas Virales/análisis , Proteínas Virales/genética , Cultivo de Virus , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...