Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NAR Genom Bioinform ; 2(1): lqaa005, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33575553

RESUMEN

The in-depth study of protein-protein interactions (PPIs) is of key importance for understanding how cells operate. Therefore, in the past few years, many experimental as well as computational approaches have been developed for the identification and discovery of such interactions. Here, we present UniReD, a user-friendly, computational prediction tool which analyses biomedical literature in order to extract known protein associations and suggest undocumented ones. As a proof of concept, we demonstrate its usefulness by experimentally validating six predicted interactions and by benchmarking it against public databases of experimentally validated PPIs succeeding a high coverage. We believe that UniReD can become an important and intuitive resource for experimental biologists in their quest for finding novel associations within a protein network and a useful tool to complement experimental approaches (e.g. mass spectrometry) by producing sorted lists of candidate proteins for further experimental validation. UniReD is available at http://bioinformatics.med.uoc.gr/unired/.

2.
PLoS One ; 12(10): e0186363, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29053708

RESUMEN

The Ssn6-Tup1 complex is a general transcriptional co-repressor formed by the interaction of Ssn6, a tetratricopeptide repeat (TPR) protein, with the Tup1 repressor. We have previously shown that the N-terminal domain of Ssn6 comprising TPRs 1 to 3 is necessary and sufficient for this interaction and that TPR1 plays critical role. In a subsequent study, we provided evidence that in the absence of Tup1, TPR1 is susceptible to proteolysis and that conformational change(s) accompany the Ssn6-Tup1 complex formation. In this study, we address the question whether the N-terminal non-TPR, glutamine-rich tail of Ssn6 (NTpolyQ), plays any role in the Ssn6/Tup1 association. Our biochemical and yeast-two-hybrid data show that truncation/deletion of the NTpolyQ domain of Ssn6 results in its self association and prevents Tup1 interaction. These results combined with in silico modeling data imply a major role of the NTpolyQ tail of Ssn6 in regulating its interaction with Tup1.


Asunto(s)
Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Glutamina/metabolismo , Conformación Proteica , Proteolisis , Proteínas Represoras/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Transcripción Genética
3.
Biochem Biophys Res Commun ; 491(4): 1055-1061, 2017 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-28780354

RESUMEN

The yeast Hsp26 protein, a conserved a-crystallin small heatshock chaperone, is assembled in to oligomeric complexes, microscopically visible as distinct cytoplasmic foci. We studied at single cell resolution the dynamics of Hsp26p foci assembly, the mode of their inheritance in to progeny cells and the physiological significance of Hsp26p function. We showed that Hsp26p foci are formed upon cells' entry in to stationary phase, but upon re-entry to proliferation they are asymmetrically retained in the mother cells and are absent from the newborn daughters. Despite the fact that Hsp26p assists re-solubilization of aggregation-prone proteins it does not extend chronological life span nor does it increase the tolerance of either mother or daughters against lethal stresses. Upon sequential HSP26 inductions, newly synthesized Hsp26p is readily incorporated in pre-existing foci, generating larger in size, but similar in appearance foci. At extreme heat-shock conditions, Hsp26p foci break apart into smaller granules dispersed in both mothers and growing buds, while recovery at normal temperature results in Hsp26p foci reassembly. These results suggested that such a complicated mechanism of dynamic Hsp26p assembly and disassembly, as well as asymmetric segregation may contribute to fine tuning regulation of protein aggregates' refolding, cell fitness and survival.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo
4.
Biochem Biophys Res Commun ; 486(1): 63-69, 2017 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-28254434

RESUMEN

Bimodality in gene expression can generate phenotypic heterogeneity facilitating fitness and growth of isogenic cell populations in suboptimal environments. We investigated the mechanism by which, in conditions of limiting galactose, yeast cell populations activate GAL genes in a bimodal fashion with a cell fraction expressing GAL genes (ON), while the rest subpopulation is kept at the non-expressing (OFF) state. We show that a long non-coding RNA (GAL10-ncRNA) crossing the bidirectional GAL1-10 promoter, decreases the rate by which single cells commit transition to the ON state without affecting the rate of GAL transcription per se in ON cells. This is accomplished by repressing stochastic expression of the bifunctional Gal1p galactokinase, which besides its enzymatic activity acts as an essential inducer of the system under those conditions. We show that once single cells switch to the ON state, the GAL10-ncRNA effect is overridden by accumulating Gal1p levels sufficient to feedback positively on Gal4p, and not by the active transcription of GAL10 that occurs in opposite direction relative to that of GAL10-ncRNA. Conversely, GAL10-ncRNA does not influence transition of ON cells, where Gal4p is active, back to the OFF state. Our model suggests that the functional interplay between GAL10-ncRNA transcription, stochastic Gal1p expression and Gal1p positive feedback on Gal4p constitutes a novel molecular switch mechanism dictating the commitment of individual cells for either metabolic state.


Asunto(s)
Galactoquinasa/genética , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , ARN Largo no Codificante/genética , Proteínas de Saccharomyces cerevisiae/genética , Retroalimentación Fisiológica , Galactoquinasa/metabolismo , Galactosa/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente , Modelos Genéticos , Mutación , Regiones Promotoras Genéticas/genética , ARN de Hongos/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis de la Célula Individual/métodos
5.
Biochem Biophys Res Commun ; 482(4): 1278-1283, 2017 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-27939892

RESUMEN

Organisms integrate information of current environmental stressors and can adjust themselves against harmful events that might occur in the future. The molecular processes that lead to such "anticipatory" behaviors, although of great interest, are mostly unexplored and the minimal genetic requirements for reconfiguring key signaling networks in order either to create or to strengthen such vital "anticipatory" capabilities is largely unknown. We identified new "anticipatory" phenotypes in yeast cells by evolving yeast strains that strongly associate a present modest stress with a future deadly one. Whole genome sequencing and classic genetic analysis revealed that two dominant negative ras2 alleles (ras2-K23N and ras2-G17C) displayed a strong "anticipatory" ability being highly resistant to oxidative stress, extremely thermotolerant and long lived only following an initial mild heat shock. We suggest that such "anticipatory" phenotypes can be easily evolved by a single point mutation in a key signaling protein, the Ras2 small GTPase, and we propose a molecular model describing how specific ras2 alleles, and not null ras2 mutants, or mutations in other components of the Ras/cAMP pathway, can enhance the "predictive ability" of cells for future lethal stressors.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas ras/metabolismo , Alelos , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Genes Dominantes , Genoma , Proteínas de Choque Térmico/metabolismo , Peróxido de Hidrógeno/química , Proteínas Mutantes/metabolismo , Estrés Oxidativo , Fenotipo , Mutación Puntual , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN , Transducción de Señal , Temperatura
6.
Biochem Biophys Res Commun ; 473(4): 1191-1196, 2016 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-27073161

RESUMEN

Eukaryotic promoters are tightly regulated and often securely repressed. However, recent reports indicated that transcripts originating from the strictly regulated GAL1-10 promoter can be detected by single-yeast cell imaging under repressive conditions. Such leaky, noisy transcription events were suppressed by a long non-coding RNA (GAL10-ncRNA) transcribed within the GAL1-10 locus. It was further suggested that GAL10-ncRNA repression of GAL1-10 promoter leakage tunes the bimodal expression pattern of the GAL network. Independent evidence has indicated that GAL10-ncRNA transcription establishes a repressive chromatin structure through the Set2 histone methyl-transferase and the Rpd3s histone deacetylase complex. In this report we set up a novel, simple genetic Cre recombinase assay in order to readily quantify transcriptional leakage from tightly repressed promoters. By applying this method we demonstrate that GAL10-ncRNA, Set2p and Rpd3p all suppress leaky GAL1-10 driven transcription. However, GAL10-ncRNA repression is not mediated by Set2p or Rpd3p. Moreover, as opposed to GAL10-ncRNA transcription, Set2 and Rpd3 do not influence the bimodal expression of GAL genes, despite their effect on GAL1-10 promoter leakage. We suggest that GAL10-ncRNA tunes the expression of GAL genes by additional mechanisms besides suppressing leaky transcription from the GAL1-10 promoter.


Asunto(s)
Genes de Cambio/genética , Integrasas/genética , ARN no Traducido/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Supresión Genética/genética , Transactivadores/genética , Secuencia de Bases , Regulación Fúngica de la Expresión Génica/genética , Histona Desacetilasas/genética , Datos de Secuencia Molecular , Activación Transcripcional/genética , Transcriptoma/genética
7.
Proteins ; 70(1): 72-82, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17634984

RESUMEN

Ssn6, a tetratricopeptide repeat (TPR) containing protein, associates with the Tup1 repressor to form a global transcriptional co-repressor complex, which is conserved across species. The three N-terminal TPR repeats of Ssn6, out of a total of 10, are involved in this particular interaction. Our previously reported 3D-modeling and mutagenesis data suggested that the structural integrity of TPR1 and its correct positioning relatively to TPR2 are crucial for Tup1 binding. In this study, we first investigate the structural stability of the Tup1 binding domain of Ssn6, in pure form, through a combination of CD spectroscopy and limited proteolysis mapping. The obtained data were next combined with molecular dynamics simulations and disorder/order predictions. This combined study revealed that, although competent to fold, in the absence of Tup1, TPR1 is partially unfolded with its helix B being highly dynamic exposing an apolar surface to the solvent. Subsequent CD spectroscopy on this domain complexed with a Tup1 fragment comprising its Ssn6 binding region provided strong evidence for a conformational change consisting of acquisition of alpha-helical structure with simultaneous stabilization of a coiled-coil configuration upon complex formation. We propose that this conformational change occurs largely in the TPR1 of Ssn6 and is in accord with the concept of folding coupled to binding, proposed for other TPR domains. A possible implication of the structural flexibility of Ssn6 TPR1 in Tup1 recognition is discussed and a novel mode of interaction is proposed for this particular TPR-mediated complex.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas Nucleares/química , Proteínas Represoras/química , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Bases , Dicroismo Circular , Cartilla de ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Hidrólisis , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mapeo Peptídico , Unión Proteica , Conformación Proteica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectrofotometría Ultravioleta
8.
Curr Biol ; 17(23): 2041-6, 2007 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-17997309

RESUMEN

It has been postulated that chromatin modifications can persist through mitosis and meiosis, thereby securing memory of transcriptional states. Whether these chromatin marks can self-propagate in progeny independently of relevant trans-acting factors is an important question in phenomena related to epigenesis. "Adaptive cellular memory" displayed by yeast cells offers a convenient system to address this question. The yeast GAL genes are slowly activated by Gal4 when cells are first exposed to galactose, but their progeny, grown in glucose media, exhibit a fast activation mode upon re-exposure to this sugar. This "galactose memory" persists for several generations and was recently proposed to involve chromatin modifications and perinuclear topology of the GAL genes cluster. Here, we perform a heterokaryon assay demonstrating that this memory does not have a chromatin basis but is maintained by cytoplasmic factor(s) produced upon previous galactose induction. We show that Gal3, the cytoplasmic rate-limiting factor that releases the Gal4 activator, is dispensable for preserving galactose memory. Instead, the important memory determinant is a close Gal3 homolog, the highly expressed Gal1 galactokinase, the residual activity of which preserves memory in progeny cells by rapidly turning on the Gal4 activator upon cells' re-exposure to galactose.


Asunto(s)
Galactoquinasa/metabolismo , Galactosa/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Medios de Cultivo , Galactoquinasa/genética , Eliminación de Gen , Glucosa/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Mol Cell Biol ; 27(11): 4198-205, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17387147

RESUMEN

The SWR1 complex (SWR1-C)-dependent deposition of the histone variant Htz1 on promoter nucleosomes is typical of Saccharomyces cerevisiae genes whose expression is frequently reprogrammed. Although this epigenetic marking is of significant physiological importance, the determinants of Htz1 deposition, the conditions that set off SWR1-C occupancy, and the implications of Htz1 in transcriptional initiation are issues that remain unresolved. In this report, we addressed these questions by investigating the GAL1 promoter. We show that Htz1 is required for efficient Mediator recruitment and transcription only when the GAL1 promoter is under the influence of the Tup1 corepressor. In fact, we show that it is Tup1 that specifies Htz1 deposition for the promoter nucleosome covering the transcription start site. This deposition occurs rapidly following transcriptional repression, and it correlates with a Tup1-independent transient recruitment of the SWR1 complex. We propose that Tup1 cooperates with SWR1-C and specifies Htz1 deposition at GAL1, thereby marking the promoter for rapid neutralization from its repressive effects.


Asunto(s)
Galactoquinasa/metabolismo , Regulación Fúngica de la Expresión Génica , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Animales , Galactoquinasa/genética , Glucosa/metabolismo , Histonas/genética , Complejos Multiproteicos , Proteínas Nucleares/genética , Proteínas Represoras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética
10.
EMBO J ; 23(9): 1943-8, 2004 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-15057269

RESUMEN

We have investigated the requirements for nucleosome remodeling upon transcriptional induction of the GAL1 promoter. We found that remodeling was dependent on two SAGA complex components, Gcn5 and Spt3. The involvement of the latter was surprising as its function has been suggested to be directly involved in TATA-binding protein (TBP) recruitment. We demonstrated that this novel function was in fact independent of TBP recruitment and this was further validated using a Gal4-driven synthetic promoter. Most importantly, we showed that the involvement of Spt3 in chromatin remodeling was independent of transcription, as it was also observed for a nonpromoter nucleosome located next to an activator-binding site. In an effort to explore how the Spt3 function was elicited, we found that Mot1, an ATPase of the Snf2 family that genetically interacts with Spt3, was also required for nucleosome remodeling independently of TBP recruitment. Interestingly enough, Spt3 and Mot1 were recruited on the GAL1 promoter as well as on the nonpromoter site in an interdependent manner. These findings show that the two proteins cooperate in nucleosomal transactions.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , ADN Helicasas/metabolismo , Expresión Génica , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Adenosina Trifosfatasas , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/metabolismo , Histona Acetiltransferasas , Plásmidos/genética , Regiones Promotoras Genéticas/genética , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Levaduras
11.
EMBO Rep ; 5(4): 368-72, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15031717

RESUMEN

Among lower eukaryotes, glucose repression is a conserved, widely spread mechanism regulating carbon catabolism. The yeast Snf1 kinase, the Mig1 DNA-binding repressor and the Mig1-interacting co-repressor complex Cyc8(Ssn6)-Tup1 are central components of this pathway. Previous experiments suggested that cytoplasmic translocation of Mig1, upon its phosphorylation by Snf1 in the nucleus, is the key regulatory step for releasing glucose repression. In this report we re-evaluate this model. We establish the coordinated repressive action of Mig1 and Cyc8-Tup1 on GAL1 transcription, but we find that Cyc8-Tup1 is not tethered by Mig1 to the promoter DNA. We demonstrate that both negative regulators occupy GAL1 continuously under either repression or activation conditions, although the majority of the Mig1 is redistributed to the cytoplasm upon activation. We show that Snf1-dependent phosphorylation of Mig1 abolishes interaction with Cyc8-Tup1, and we propose that regulation of this interaction, not the Mig1 cytoplasmic localization, is the molecular switch that controls transcriptional repression/de-repression.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Glucosa/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Fosforilación , Levaduras/genética , Levaduras/metabolismo
12.
EMBO J ; 23(2): 333-42, 2004 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-14739928

RESUMEN

We found Nhp6a/b yeast HMG-box chromatin-associated architectural factors and Ssn6 (Cyc8) corepressor to be crucial transcriptional coactivators of FRE2 gene. FRE2 encoding a plasma membrane ferric reductase is induced by the iron-responsive, DNA-binding, transcriptional activator Aft1. We have shown that Nhp6 interacts directly with the Aft1 N-half, including the DNA-binding region, to facilitate Aft1 binding at FRE2 UAS. Ssn6 also interacts directly with the Aft1 N-half and is recruited on FRE2 promoter only in the presence of both Aft1 and Nhp6. This Nhp6/Ssn6 role in Aft1-mediated transcription is FRE2 promoter context specific, and both regulators are required for activation-dependent chromatin remodeling. Our results provide the first in vivo biochemical evidence for nonsequence-specific HMG-box protein-facilitated recruitment of a yeast gene-specific transactivator to its DNA target site and for Nhp6-mediated Ssn6 promoter recruitment. Ssn6 has an explicitly coactivating role on FRE2 promoter only upon induction. Therefore, transcriptional activation in response to iron availability involves multiple protein interactions between the Aft1 iron-responsive DNA-binding factor and global regulators such as Nhp6 and Ssn6.


Asunto(s)
Proteínas de Unión al ADN/fisiología , FMN Reductasa/genética , Proteínas Nucleares/fisiología , Proteínas Represoras/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Factores de Transcripción/fisiología , Sitios de Unión , Cromatina/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , FMN Reductasa/biosíntesis , Eliminación de Gen , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Proteínas HMGN , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Activación Transcripcional
13.
Mol Cell ; 9(6): 1297-305, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12086626

RESUMEN

The yeast Cyc8 and Tup1 proteins form a corepressor complex that, when tethered to DNA, turns off transcription. Release of the Cyc8-Tup1 corepressor from a promoter has been considered as a prerequisite for subsequent transcriptional activation. Contrasting this, we demonstrate that Cyc8-Tup1 is continuously associated with target promoters under both repressive and inducing conditions. At the GAL1 promoter, Cyc8-Tup1 facilitates recruitment of SAGA (Spt-Ada-Gcn5-acetyltranferase) via Cti6, a PHD domain protein that physically links the Cyc8-Tup1 and SAGA complexes. Lack of functional corepressor renders GAL1 transcription largely independent of specific SAGA subunits. Thus, corepressor's release is not the mechanism of derepression; instead, it is the coactivator complex that alleviates Cyc8-Tup1-mediated repression under induction conditions.


Asunto(s)
Proteínas de Unión al ADN , Proteínas Fúngicas/metabolismo , Proteínas Nucleares , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Sustancias Macromoleculares , Estructura Terciaria de Proteína , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA