Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Biol Interact ; 370: 110329, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36565974

RESUMEN

Until recently, sorafenib has been the only treatment approved by the U.S. Food and Drug Administration for patients with advanced hepatocellular carcinoma (HCC). Some patients, however, exhibit resistance to this treatment and subsequently experience cancer progression, recurrence, or death. Therefore, identifying a new alternative treatment for patients with little or no response to sorafenib treatment is vital. In this study, we explored the therapeutic potential and underlying molecular mechanism of antrocinol ((3aS,4R,6aS,10aR)-4-(hydroxymethyl)-7,7-dimethyldecahydro-1H-naphtho[1,8a-c]furan-1-one) in patients with HCC. The results indicated that antrocinol was more therapeutically effective than antrocin, Stivarga, and sorafenib against HCC cell lines. Antrocinol also substantially suppressed the expression of KRAS-GTP, p-MEK1/2, p-ERK1/2, and p-AKT in the Huh7 cell line. Additionally, antrocinol-induced apoptosis in the Huh7 cell line, inhibited the formation of tumorspheres, and suppressed the expression of cancer stem cell markers CD133, KLF4, CD44, OCT4, SOX2, and c-Myc. Animal studies revealed that antrocinol alone considerably suppressed tumor growth in nonobese diabetic/severe combined immunodeficient mice inoculated with Huh7 tumorspheres. It also synergistically enhanced the anticancer effect of sorafenib, resulting in enhanced suppression of tumor growth (p < 0.001) and tumorsphere formation (p < 0.001). In tumor samples resected from mice treated with antrocinol alone or in combination with sorafenib, immunohistochemical analysis revealed an increase in BAX expression and a decrease in ERK and AKT protein expression. To the best of our knowledge, this is the first report of the anti-HCC activity of antrocinol. With its higher therapeutic efficacy than that of sorafenib, antrocinol is a candidate drug for patients with HCC who demonstrate little or no response to sorafenib treatment.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Sorafenib/farmacología , Sorafenib/uso terapéutico , Carcinoma Hepatocelular/patología , Proteínas Proto-Oncogénicas p21(ras) , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Hepáticas/patología , Sistema de Señalización de MAP Quinasas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular Tumoral , Transducción de Señal , Niacinamida/farmacología , Apoptosis
2.
Phytomedicine ; 108: 154478, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36265255

RESUMEN

Activation of mitogen-activated protein kinase (MAPK) and PI3K signaling confers resistance against sorafenib, a mainstay treatment for advanced hepatocellular carcinoma (HCC). Antrocin and ovatodiolide constitute as the most potent secondary metabolites isolated from Antrodia camphorata and Anisomeles indica, respectively. Both natural compounds have recently gained a lot of attention due to their putative inhibition of MAPK and PI3K signaling in various solid cancers. However, whether their combination is effective in HCC remains unknown. Here, we investigated their effect, alone or in various combinations, on MAPK and PI3K signaling pathways in HCC cells. An array of in vitro study were used to investigate anticancer and stemness effects to treat HCC, such as cytotoxicity, drug combination index, migration, invasion, colony formation, and tumor sphere formation. Drug effect in vivo was evaluated using mouse xenograft models. In this study, antrocin and ovatodiolide synergistically inhibited the SNU387, Hep3B, Mahlavu, and Huh7 cell lines. Sequential combination treatment of Huh7 and Mahlavu with ovatodiolide followed by antrocin resulted stronger cytotoxic effect than did treatment with antrocin followed by ovatodiolide, their simultaneous administration, antrocin alone, or ovatodiolide alone. In the Huh7 and Mahlavu cell lines, ovatodiolide→antrocin significantly suppressed colony formation and proliferation as well as markedly downregulated ERK1/2, Akt, and mTOR expression. Inhibition of ERK1/2 and Akt/mTOR signaling by ovatodiolide→antrocin suppressed ribosomal biogenesis, autophagy, and cancer stem cell-like phenotypes and promoted apoptosis in Huh7 and Mahlavu cells. The sorafenib-resistant clone of Huh7 was effectively inhibited by synergistic combination of both compound in vitro. Eventually, the ovatodiolide→antrocin combination synergistically suppressed the growth of HCC xenografts. Taken together, our findings suggested that ovatodiolide→antrocin combination may represent potential therapeutic approach for patients with advanced HCC.


Asunto(s)
Carcinoma Hepatocelular , Diterpenos , Neoplasias Hepáticas , Animales , Humanos , Ratones , Apoptosis , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ribosomas/metabolismo , Ribosomas/patología , Sorafenib , Serina-Treonina Quinasas TOR/metabolismo , Lactonas/farmacología , Diterpenos/farmacología , Sesquiterpenos/farmacología , Células Madre Neoplásicas/efectos de los fármacos
3.
Comput Biol Med ; 150: 106185, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-37859283

RESUMEN

Head and neck squamous cell carcinomas (HNSCC) are prevalent malignancies with a disappointing prognosis, necessitating the search for theranostic biomarkers for better management. Based on a meta-analysis of transcriptomic data containing ten clinical datasets of HNSCC and matched nonmalignant samples, we identified SERPINE1/MMP3/COL1A1/SPP1 as essential hub genes as the potential theranostic biomarkers. Our analysis suggests these hub genes are associated with the extracellular matrix, peptidoglycans, cell migration, wound-healing processes, complement and coagulation cascades, and the AGE-RAGE signaling pathway within the tumor microenvironment. Also, these hub genes were associated with tumor-immune infiltrating cells and immunosuppressive phenotypes of HNSCC. Further investigation of The Cancer Genome Atlas (TCGA) cohorts revealed that these hub genes were associated with staging, metastasis, and poor survival in HNSCC patients. Molecular docking simulations were performed to evaluate binding activities between the hub genes and antrocinol, a novel small-molecule derivative of an anticancer phytochemical antrocin previously discovered by our group. Antrocinol showed high affinities to MMP3 and COL1A1. Notably, antrocinol presented satisfactory drug-like and ADMET properties for therapeutic applications. These results hinted at the potential of antrocinol as an anti-HNSCC candidate via targeting MMP3 and COL1A1. In conclusion, we identified hub genes: SERPINE1/MMP3/COL1A1/SPP1 as potential diagnostic biomarkers and antrocinol as a potential new drug for HNSCC.


Asunto(s)
Neoplasias de Cabeza y Cuello , Carcinoma de Células Escamosas de Cabeza y Cuello , Microambiente Tumoral , Humanos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Metaloproteinasa 3 de la Matriz/genética , Metaloproteinasa 3 de la Matriz/metabolismo , Simulación del Acoplamiento Molecular , Osteopontina/genética , Osteopontina/metabolismo , Inhibidor 1 de Activador Plasminogénico/genética , Inhibidor 1 de Activador Plasminogénico/metabolismo , Medicina de Precisión , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Transcriptoma , Microambiente Tumoral/genética
4.
Int J Mol Sci ; 22(21)2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34769266

RESUMEN

Sublethal dosages of imidacloprid cause long-term destructive effects on honey bees at the individual and colony levels. In this review, the molecular effects of sublethal imidacloprid were integrated and reported. Several general effects have been observed among different reports using different approaches. Quantitative PCR approaches revealed that imidacloprid treatments during the adult stage are expressed as changes in immuneresponse, detoxification, and oxidation-reduction response in both workers and queens. In addition, transcriptomic approaches suggested that phototransduction, behavior, and somatic muscle development also were affected. Although worker larvae show a higher tolerance to imidacloprid than adults, molecular evidence reveals its potential impacts. Sublethal imidacloprid treatment during the larval stage causes gene expression changes in larvae, pupae, and adults. Transcriptome profiles suggest that the population and functions of affected differentially expressed genes, DEGs, vary among different worker ages. Furthermore, an early transcriptomic switch from nurse bees to foragers was observed, suggesting that precocious foraging activity may occur. This report comprehensively describes the molecular effects of sublethal dosages of imidacloprid on the honey bee Apis mellifera. The corresponding molecular pathways for physiological and neurological responses in imidacloprid-exposed honey bees were validated. Transcriptomic evidence suggests a global and sustained sublethal impact of imidacloprid on honey bee development.


Asunto(s)
Abejas/metabolismo , Neonicotinoides/farmacología , Nitrocompuestos/farmacología , Transcriptoma/efectos de los fármacos , Animales , Larva/metabolismo
5.
Pharmaceutics ; 13(10)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34683848

RESUMEN

Alzheimer's disease (AD) is the most frequent cause of neurodegenerative dementia and affects nearly 50 million people worldwide. Early stage diagnosis of AD is challenging, and there is presently no effective treatment for AD. The specific genetic alterations and pathological mechanisms of the development and progression of dementia remain poorly understood. Therefore, identifying essential genes and molecular pathways that are associated with this disease's pathogenesis will help uncover potential treatments. In an attempt to achieve a more comprehensive understanding of the molecular pathogenesis of AD, we integrated the differentially expressed genes (DEGs) from six microarray datasets of AD patients and controls. We identified ATPase H+ transporting V1 subunit A (ATP6V1A), BCL2 interacting protein 3 (BNIP3), calmodulin-dependent protein kinase IV (CAMK4), TOR signaling pathway regulator-like (TIPRL), and the translocase of outer mitochondrial membrane 70 (TOMM70) as upregulated DEGs common to the five datasets. Our analyses revealed that these genes exhibited brain-specific gene co-expression clustering with OPA1, ITFG1, OXCT1, ATP2A2, MAPK1, CDK14, MAP2K4, YWHAB, PARK2, CMAS, HSPA12A, and RGS17. Taking the mean relative expression levels of this geneset in different brain regions into account, we found that the frontal cortex (BA9) exhibited significantly (p < 0.05) higher expression levels of these DEGs, while the hippocampus exhibited the lowest levels. These DEGs are associated with mitochondrial dysfunction, inflammation processes, and various pathways involved in the pathogenesis of AD. Finally, our blood-brain barrier (BBB) predictions using the support vector machine (SVM) and LiCABEDS algorithm and molecular docking analysis suggested that antrocin is permeable to the BBB and exhibits robust ligand-receptor interactions with high binding affinities to CAMK4, TOMM70, and T1PRL. Our results also revealed good predictions for ADMET properties, drug-likeness, adherence to Lipinskís rules, and no alerts for pan-assay interference compounds (PAINS) Conclusions: These results suggest a new molecular signature for AD parthenogenesis and antrocin as a potential therapeutic agent. Further investigation is warranted.

6.
Cancers (Basel) ; 13(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34359748

RESUMEN

Despite the significant advancement in therapeutic strategies, breast, colorectal, gastric, lung, liver, and prostate cancers remain the most prevalent cancers in terms of incidence and mortality worldwide. The major causes ascribed to these burdens are lack of early diagnosis, high metastatic tendency, and drug resistance. Therefore, exploring reliable early diagnostic and prognostic biomarkers universal to most cancer types is a clinical emergency. Consequently, in the present study, the differentially expressed genes (DEGs) from the publicly available microarray datasets of six cancer types (liver, lung colorectal, gastric, prostate, and breast cancers), termed hub cancers, were analyzed to identify the universal DEGs, termed hub genes. Gene set enrichment analysis (GSEA) and KEGG mapping of the hub genes suggested their crucial involvement in the tumorigenic properties, including distant metastases, treatment failure, and survival prognosis. Notably, our results suggested high frequencies of genetic and epigenetic alterations of the DEGs in association with tumor staging, immune evasion, poor prognosis, and therapy resistance. Translationally, we intended to identify a drug candidate with the potential for targeting the hub genes. Using a molecular docking platform, we estimated that ovatodiolide, a bioactive anti-cancer phytochemical, has high binding affinities to the binding pockets of the hub genes. Collectively, our results suggested that the hub genes were associated with establishing an immune-suppressive tumor microenvironment favorable for disease progression and promising biomarkers for the early diagnosis and prognosis in multiple cancer types and could serve as potential druggable targets for ovatodiolide.

7.
Front Genet ; 12: 665927, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220942

RESUMEN

The environmental residue/sublethal doses of neonicotinoid insecticides are believed to generate a negative impact on pollinators, including honey bees. Here we report our recent investigation on how imidacloprid, one of the major neonicotinoids, affects worker bees by profiling the transcriptomes of various ages of bees exposed to different doses of imidacloprid during the larval stage. The results show that imidacloprid treatments during the larval stage severely altered the gene expression profiles and may induce precocious foraging. Differential expression of foraging regulators was found in 14-day-old treated adults. A high transcriptome similarity between larvae-treated 14-day-old adults and 20-day-old controls was also observed, and the similarity was positively correlated with the dose of imidacloprid. One parts per billion (ppb) of imidacloprid was sufficient to generate a long-term impact on the bee's gene expression as severe as with 50 ppb imidacloprid. The disappearance of nurse bees may be driven not only by the hive member constitution but also by the neonicotinoid-induced precocious foraging behavior.

8.
Environ Pollut ; 281: 116944, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33813192

RESUMEN

Artificial light at night (ALAN) is a major driver of firefly population declines, but its physiological effects are not well understood. To investigate the impact of ALAN on firefly development, we exposed larval Aquatica ficta fireflies to ALAN for two weeks. High larval mortality was observed in the periods of 1-68 days and 106-134 days post-treatment, which may represent the short- and long-term impacts of ALAN. We then profiled the transcriptome of larval Aquatica ficta fireflies following two weeks of ALAN exposure. A total of 1262 (1.67% out of 75777 unigenes) were differentially expressed in the treatment group: 1157 were down-regulated, and 105 were up-regulated. Up-regulated unigenes were related to regulation of hormone levels, ecdysteroid metabolic process, and response to stimulus; down-regulated unigenes were related to negative regulation of insulin receptor signaling, germ cell development, oogenesis, spermatid development, and regulation of neuron differentiation. Transcriptome results suggest that the endocrine, reproductive, and neural development of firefly larvae could be impaired by even relatively brief period of ALAN exposure. This report contributes a much-needed molecular perspective to the growing body of research documenting the fitness impacts of ALAN on bioluminescent fireflies.


Asunto(s)
Luciérnagas , Luz , Animales , Expresión Génica , Larva , Reproducción
9.
Cancer Immunol Res ; 8(10): 1251-1261, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32855157

RESUMEN

We report on a comprehensive analysis of the gut microbiomes of patients with gastrointestinal (GI) cancer receiving anti-PD-1/PD-L1 treatment. The human gut microbiota has been associated with clinical responses to anti-PD-1/PD-L1 immunotherapy in melanoma, non-small cell lung cancer, and renal cell carcinoma. We aimed to investigate this association in GI cancers. We also identified bacterial taxa with patient stratification potential. We recruited 74 patients with advanced-stage GI cancer receiving anti-PD-1/PD-L1 treatment and collected their fecal samples prior to and during immunotherapy, along with clinical evaluations. Our 16S rRNA taxonomy survey on the fecal samples revealed an elevation of the Prevotella/Bacteroides ratio in patients, with a preferred response to anti-PD-1/PD-L1 treatment, and a particular subgroup of responders harboring a significantly higher abundance of Prevotella, Ruminococcaceae, and Lachnospiraceae The shotgun metagenomes of the same samples showed that patients exhibiting different responses had differential abundance of pathways related to nucleoside and nucleotide biosynthesis, lipid biosynthesis, sugar metabolism, and fermentation to short-chain fatty acids (SCFA). Gut bacteria that were capable of SCFA production, including Eubacterium, Lactobacillus, and Streptococcus, were positively associated with anti-PD-1/PD-L1 response across different GI cancer types. We further demonstrated that the identified bacterial taxa were predictive of patient stratification in both our cohort and melanoma patients from two previously published studies. Our results thus highlight the impact of gut microbiomes on anti-PD-1/PD-L1 outcomes, at least in a subset of patients with GI cancer, and suggest the potential of the microbiome as a marker for immune-checkpoint blockade responses.See articles by Tomita et al., p. 1236, and Hakozaki et al., p. 1243.


Asunto(s)
Neoplasias Gastrointestinales/tratamiento farmacológico , Inmunoterapia/métodos , Antígeno B7-H1/farmacología , Femenino , Microbioma Gastrointestinal , Humanos , Masculino
10.
Toxicol Appl Pharmacol ; 401: 115109, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32544403

RESUMEN

Bladder cancer (BCa) is the fourth leading cause of cancer deaths worldwide due to its aggressiveness and resistance against therapies. Intricate interactions between cancer cells and the tumor microenvironment (TME) are essential for both disease progression and regression. Thus, interrupting molecular communications within the TME could potentially provide improved therapeutic efficacies. M2-polarized tumor-associated macrophages (M2 TAMs) were shown to contribute to BCa progression and drug resistance. We attempted to provide evidence for ovatodiolide (OV) as a potential therapeutic agent that targets both TME and BCa cells. First, tumor-suppressing functions of OV were determined by cell viability, colony, and tumor-sphere formation assays using a coculture system composed of M2 TAMs/BCa cells. Subsequently, we demonstrated that extracellular vesicles (EVs) isolated from M2 TAMs containing oncomiR-21 and mRNAs, including Akt, STAT3, mTOR, and ß-catenin, promoted cisplatin (CDDP) resistance, migration, and tumor-sphere generation in BCa cells, through increasing CDK6, mTOR, STAT3, and ß-catenin expression. OV treatment also prevented M2 polarization and reduced EV cargos from M2 TAMs. Finally, in vivo data demonstrated that OV treatment overcame CDDP resistance. OV only and the OV + CDDP combination both resulted in significant reductions in mTOR, ß-catenin, CDK6, and miR-21 expression in tumor samples and EVs isolated from serum. Collectively, we demonstrated that M2 TAMs induced malignant properties in BCa cells, in part via oncogenic EVs. OV treatment prevented M2 TAM polarization, reduced EV cargos derived from M2 TAMs, and suppressed ß-catenin/mTOR/CDK6 signaling. These findings provide preclinical evidence for OV as a single or adjuvant agent for treating drug-resistant BCa.


Asunto(s)
Quinasa 6 Dependiente de la Ciclina/metabolismo , Diterpenos/uso terapéutico , MicroARNs/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo , beta Catenina/metabolismo , Animales , Carcinogénesis/efectos de los fármacos , Carcinogénesis/metabolismo , Línea Celular Tumoral , Técnicas de Cocultivo , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Diterpenos/aislamiento & purificación , Diterpenos/farmacología , Relación Dosis-Respuesta a Droga , Exosomas/efectos de los fármacos , Exosomas/metabolismo , Exosomas/patología , Femenino , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , MicroARNs/antagonistas & inhibidores , Plantas Medicinales , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , beta Catenina/antagonistas & inhibidores
11.
Ann Bot ; 123(3): 469-482, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30376036

RESUMEN

BACKGROUND AND AIMS: In recent years, increasing numbers of long non-coding RNAs (lncRNAs) have been identified in humans, animals and plants, and several of them have been shown to play important roles in diverse biological processes. However, little work has been performed on the regulation mechanism of lncRNA biogenesis and expression, especially in plants. Compared with studies of tomato MADS-box transcription factor RIPENING INHIBITOR (RIN) target coding genes, there are few reports on its relationship to non-coding RNAs. The aim of the present study was to identify and explore the specific role of RIN target lncRNAs in tomato fruit development and ripening. METHODS: lncRNA targets of RIN were identified by chromatin immunoprecipitation sequencing (ChIP-seq) combined with RNA deep sequencing analysis. Six selected lncRNA targets were validated by quantitative real-time PCR, ChIP and electrophoretic mobility shift assays, and we further confirmed differential expression between wild-type and ripening-deficient mutant fruit, and RIN direct binding in the promoter regions. By means of virus-induced gene silencing (VIGS) assays and a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) genome editing strategy, the ripening-related function of a specific target lncRNA (lncRNA2155) was studied. KEY RESULTS: We identified 187 lncRNAs as direct RIN targets, which exhibited RIN binding sites in their promoters and showed different expression between the wild-type and rin mutant. Six target lncRNAs were shown to bind with RIN directly in their promoters in vivo and in vitro. Moreover, using CRISPR/Cas9 technology to knock out the locus of the target lncRNA2155 indicated that it delayed fruit ripening in tomato. CONCLUSIONS: Collectively, these findings provide new insight into RIN in the transcriptional regulation of lncRNAs and suggest that lncRNAs will contribute to a better understanding of the RIN regulatory network that controls fruit ripening.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Proteínas de Dominio MADS/genética , Proteínas de Plantas/genética , ARN Largo no Codificante/genética , ARN de Planta/genética , Solanum lycopersicum/genética , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Proteínas de Dominio MADS/metabolismo , Proteínas de Plantas/metabolismo , ARN Largo no Codificante/metabolismo , ARN de Planta/metabolismo
12.
Cancers (Basel) ; 10(8)2018 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-30103475

RESUMEN

BACKGROUND: Colorectal cancer (CRC) remains a leading cause of cancer-related morbidity and mortality in both sexes globally. This is not unconnected with the heterogeneity and plasticity of CRC stem cells (CRC-SCs) which stealthily exploit the niche-related and (epi)genetic factors to facilitate metastasis, chemoresistance, tumor recurrence, and disease progression. Despite the accumulating evidence of the role of dysregulated microRNAs in malignancies, the therapeutic efficacy of pharmacological-targeting of CRC-SC-associated microRNAs is relatively under-explored. EXPERIMENTAL APPROACH: In this present study, we employed relatively new bioinformatics approaches, analyses of microarray data, Western blot, real-time polymerase chain reaction (RT-PCR), and functional assays to show that hsa-miR-324-5p expression is significantly suppressed in CRC cells, and inversely correlates with the aberrant expression of SOD2. RESULTS: This converse hsa-miR-324-5p/SOD2 relationship is associated with enhanced oncogenicity, which is effectively inhibited by 4-acetylantroquinonol B (4-AAQB), as evidenced by inhibited cell viability and proliferation, as well as attenuated migration, invasion, and clonogenicity in 4-AAQB-treated DLD1 and HCT116 cells. Interestingly, 4-AAQB did not affect the viability and proliferation of normal colon cells. We also showed that 4-AAQB-induced re-expression of hsa-miR-324-5p, akin to short-interfering RNA, reduced SOD2 expression, correlates with the concurrent down-regulation of SOD2, N-cadherin, vimentin, c-Myc, and BcL-xL2, with concomitant up-regulation of E-cadherin and BAX2 proteins. Enhanced expression of hsa-miR-324-5p in the CRC cells suppressed their tumorigenicity in vitro and in vivo. Additionally, 4-AAQB synergistically potentiates the FOLFOX (folinate (leucovorin), fluorouracil (5FU), and oxaliplatin) anticancer effect by eliciting the re-expression of SOD2-suppressed hsa-miR-324, and inhibiting SOD2-mediated tumorigenicity. CONCLUSION: Our findings highlight the pre-clinical anti-CSC efficacy of 4-AAQB, with or without FOLFOX in CRC, and suggest a potential novel therapeutic strategy for CRC patients.

13.
Cancers (Basel) ; 11(1)2018 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-30602706

RESUMEN

Radiotherapy is one of the most common treatment options for local or regional advanced prostate cancer (PCa). Importantly, PCa is prone to radioresistance and often develops into malignancies after long-term radiotherapy. Antrocin, a sesquiterpene lactone isolated from Antrodia cinnamomea, possesses pharmacological efficacy against various cancer types; however, its therapeutic potential requires comprehensive exploration, particularly in radioresistant PCa cells. In this study, we emphasized the effects of antrocin on radioresistant PCa cells and addressed the molecular mechanism underlying the radiosensitization induced by antrocin. Our results showed that a combination treatment with antrocin and ionizing radiation (IR) synergistically inhibited cell proliferation and induced apoptosis in radioresistant PCa cells. We further demonstrated that antrocin downregulated PI3K/AKT and MAPK signaling pathways as well as suppressed type 1 insulin-like growth factor 1 receptor (IGF-1R)-mediated induction of ß-catenin to regulate cell cycle and apoptosis. Using xenograft mouse models, we showed that antrocin effectively enhanced radiotherapy in PCa. Our study demonstrates that antrocin sensitizes PCa to radiation through constitutive suppression of IGF-1R downstream signaling, revealing that it can be developed as a potent therapeutic agent to overcome radioresistant PCa.

14.
Plant Cell ; 29(8): 1883-1906, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28733419

RESUMEN

The hormone jasmonate (JA), which functions in plant immunity, regulates resistance to pathogen infection and insect attack through triggering genome-wide transcriptional reprogramming in plants. We show that the basic helix-loop-helix transcription factor (TF) MYC2 in tomato (Solanum lycopersicum) acts downstream of the JA receptor to orchestrate JA-mediated activation of both the wounding and pathogen responses. Using chromatin immunoprecipitation sequencing (ChIP-seq) coupled with RNA sequencing (RNA-seq) assays, we identified 655 MYC2-targeted JA-responsive genes. These genes are highly enriched in Gene Ontology categories related to TFs and the early response to JA, indicating that MYC2 functions at a high hierarchical level to regulate JA-mediated gene transcription. We also identified a group of MYC2-targeted TFs (MTFs) that may directly regulate the JA-induced transcription of late defense genes. Our findings suggest that MYC2 and its downstream MTFs form a hierarchical transcriptional cascade during JA-mediated plant immunity that initiates and amplifies transcriptional output. As proof of concept, we showed that during plant resistance to the necrotrophic pathogen Botrytis cinerea, MYC2 and the MTF JA2-Like form a transcription module that preferentially regulates wounding-responsive genes, whereas MYC2 and the MTF ETHYLENE RESPONSE FACTOR.C3 form a transcription module that preferentially regulates pathogen-responsive genes.


Asunto(s)
Ciclopentanos/farmacología , Oxilipinas/farmacología , Inmunidad de la Planta/efectos de los fármacos , Proteínas de Plantas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/inmunología , Transcripción Genética/efectos de los fármacos , Secuencias de Aminoácidos , Sitios de Unión , Botrytis/fisiología , Resistencia a la Enfermedad/efectos de los fármacos , Resistencia a la Enfermedad/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ontología de Genes , Genes de Plantas , Solanum lycopersicum/efectos de los fármacos , Modelos Biológicos , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Análisis de Secuencia de ARN , Transcriptoma/genética
15.
Cancer Lett ; 364(2): 125-34, 2015 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-25976769

RESUMEN

Triple-negative breast cancer (TNBC) is chemotherapy-refractory and associated with poor clinical prognosis. Doxorubicin (Doxo), a class I anthracycline and first-line anticancer agent, effective against a wide spectrum of neoplasms including breast carcinoma, is associated with several cumulative dose-dependent adverse effects, including cardiomyopathy, typhilitis, and acute myelotoxicity. This study evaluated the usability of Ovatodiolide (Ova) in sensitizing TNBC cells to Doxo cytotoxicity, so as to reduce Doxo effective dose and consequently its adverse effects. TNBC cell lines MDA-MB-231 and HS578T were used. Pre-treatment of the TNBC cells with 10 µM Ova 24 h before Doxo administration increased the Doxo anticancer effect (IC50 1.4 µM) compared to simultaneous treatment with Doxo ( IC50 1.8 µM), or Doxo alone (IC50 9.2 µM). Intracellular accumulation of Doxo was lowest in Ova pre-treated cells at all Doxo concentrations, when compared with Doxo or simultaneously treated cells. In comparison to the Doxo-only group, cell cycle analysis of MDA-MB-231 cells treated concurrently with 2.5 µM Ova and 1.25 µM Doxo showed increased percentage of cells arrested at G0/G1; however, pre-treatment with the same concentration of Ova 24 h before Doxo showed greater tumor growth inhibition, with a 2.4-fold increased percentage of cells in G0/G1 arrest, greater Doxo-induced apoptosis, and significantly reduced intracellular Doxo accumulation. Additionally, Ova-sensitized TNBC cells also lost their cancer stem cell-like phenotype evidenced by significant dissolution, necrosis of formed mammospheres. Taken together, these findings indicate that Ova sensitizes TNBC cells to Doxo and potentiates doxorubicin-induced elimination of the TNBC cancer stem cell-like phenotype.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Diterpenos/farmacología , Doxorrubicina/farmacología , Células Madre Neoplásicas/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Línea Celular Tumoral , Diterpenos/administración & dosificación , Doxorrubicina/administración & dosificación , Doxorrubicina/efectos adversos , Sinergismo Farmacológico , Humanos , Células MCF-7 , Células Madre Neoplásicas/patología , Neoplasias de la Mama Triple Negativas/patología
16.
Toxicol In Vitro ; 28(4): 552-61, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24434019

RESUMEN

The aberrant activation of Wnt/ß-catenin signaling plays an important role in the carcinogenesis and progression of hepatocellular carcinoma (HCC). Therefore, the Wnt/ß-catenin signaling molecules are attractive candidates for the development of targeted therapies for this disease. The present study showed that destruxin B (DB) inhibits the proliferation and induces the apoptosis of HCC cells by decreasing the protein expression of anti-apoptotic Bcl-2 and Bcl-xL and increasing the expression of the proapoptotic protein Bax. More importantly, DB also attenuates Wnt-signaling in HCC cells by downregulating ß-catenin, Tcf4, and ß-catenin/Tcf4 transcriptional activity, which results in the decreased expression of ß-catenin target genes, such as cyclin D1, c-myc, and survivin. Furthermore, DB affects the migratory and invasive abilities of Sk-Hep1 cells through the suppression of markers of the epithelial-mesenchymal transition (EMT). A synergistic anti-proliferative and migratory effect was achieved using the combination of DB and sorafenib in Sk-Hep1 cells. In conclusion, DB acts as a novel Wnt/ß-catenin inhibitor and reduces the aggressiveness and invasive potential of HCC by altering the cells' EMT status and mobility. DB in combination with sorafenib may be considered for future clinical use for the management of metastatic HCC.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Depsipéptidos/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Hepatocitos/fisiología , Neoplasias Hepáticas/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Depsipéptidos/química , Transición Epitelial-Mesenquimal/fisiología , Hepatocitos/efectos de los fármacos , Humanos , Estructura Molecular , Vía de Señalización Wnt/fisiología
17.
Nucleic Acids Res ; 42(Database issue): D178-83, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24302579

RESUMEN

Gene expression profiling has been extensively used in the past decades, resulting in an enormous amount of expression data available in public databases. These data sets are informative in elucidating transcriptional regulation of genes underlying various biological and clinical conditions. However, it is usually difficult to identify transcription factors (TFs) responsible for gene expression changes directly from their own expression, as TF activity is often regulated at the posttranscriptional level. In recent years, technical advances have made it possible to systematically determine the target genes of TFs by ChIP-seq experiments. To identify the regulatory programs underlying gene expression profiles, we constructed a database of phenotype-specific regulatory programs (DPRP, http://syslab.nchu.edu.tw/DPRP/) derived from the integrative analysis of TF binding data and gene expression data. DPRP provides three methods: the Fisher's Exact Test, the Kolmogorov-Smirnov test and the BASE algorithm to facilitate the application of gene expression data for generating new hypotheses on transcriptional regulatory programs in biological and clinical studies.


Asunto(s)
Bases de Datos Genéticas , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Factores de Transcripción/metabolismo , Algoritmos , Sitios de Unión , Humanos , Internet , Fenotipo
18.
Carcinogenesis ; 34(12): 2918-28, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23880305

RESUMEN

Lung cancer is the leading cause of cancer deaths worldwide and current therapies fail to treat this disease in majority of cases. Antrodia camphorata is a medicinal mushroom being widely used as food dietary supplement for cancer prevention. The sesquiterpene lactone antrocin is the most potent among >100 secondary metabolites isolated from A. camphorata. However, the molecular mechanisms of antrocin-mediated anticancer effects remain unclear. In this study, we found that antrocin inhibited cell proliferation in two non-small-cell lung cancer cells, namely H441 (wild-type epidermal growth factor receptor, IC50 = 0.75 µM) and H1975 (gefitnib-resistant mutant T790M, IC50 = 0.83 µM). Antrocin dose dependently suppressed colony formation and induced apoptosis as evidenced by activated caspase-3 and increased Bax/Bcl2 ratio. Gene profiling studies indicated that antrocin downregulated Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway. We further demonstrated that antrocin suppressed both constitutively activated and interleukin 6-induced STAT3 phosphorylation and its subsequent nuclear translocation. Such inhibition is found to be achieved through the suppression of JAK2 and interaction between STAT3 and extracellular signal-regulated kinase. Additionally, antrocin increased microRNA let-7c expression and suppressed STAT signaling. The combination of antrocin and JAK2/STAT3 gene silencing significantly increased apoptosis in H441 cells. Such dual interruption of JAK2 and STAT3 pathways also induced downregulation of antiapoptotic protein mcl-1 and increased caspase-3 expression. In vivo intraperitoneal administration of antrocin significantly suppressed the growth of lung cancer tumor xenografts. Our results indicate that antrocin may be a potential therapeutic agent for human lung cancer cells through constitutive inhibition of JAK2/STAT3 pathway.


Asunto(s)
Apoptosis/efectos de los fármacos , Janus Quinasa 2/genética , Lactonas/farmacología , Neoplasias Pulmonares/genética , MicroARNs/genética , Factor de Transcripción STAT3/genética , Sesquiterpenos/farmacología , Agaricales/química , Antineoplásicos/farmacología , Antrodia/química , Apoptosis/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Caspasa 3/genética , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Janus Quinasa 2/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcr/genética , Proteínas Proto-Oncogénicas c-bcr/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
19.
Artículo en Inglés | MEDLINE | ID: mdl-23431343

RESUMEN

The bacterial pathogen Helicobacter pylori (Hp) is the leading risk factor for the development of gastric cancer. Hp virulence factor, cytotoxin-associated gene A (CagA) interacted with cholesterol-enriched microdomains and leads to induction of inflammation in gastric epithelial cells (AGS). In this study, we identified a triterpenoid methylantcinate B (MAB) from the medicinal mushroom Antrodia camphorata which inhibited the translocation and phosphorylation of CagA and caused a reduction in hummingbird phenotype in HP-infected AGS cells. Additionally, MAB suppressed the Hp-induced inflammatory response by attenuation of NF-κB activation, translocation of p65 NF-κB, and phosphorylation of IκB-α, indicating that MAB modulates CagA-mediated signaling pathway. Additionally, MAB also suppressed the IL-8 luciferase activity and its secretion in HP-infected AGS cells. On the other hand, molecular structure simulations revealed that MAB interacts with CagA similarly to that of cholesterol. Moreover, binding of cholesterol to the immobilized CagA was inhibited by increased levels of MAB. Our results demonstrate that MAB is the first natural triterpenoid which competes with cholesterol bound to CagA leading to attenuation of Hp-induced pathogenesis of epithelial cells. Thus, this study indicates that MAB may have a scope to develop as a therapeutic candidate against Hp CagA-induced inflammation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA