Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Trans Pattern Anal Mach Intell ; 45(7): 8390-8404, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37018262

RESUMEN

This paper proposes a novel paradigm for the unsupervised learning of object landmark detectors. Contrary to existing methods that build on auxiliary tasks such as image generation or equivariance, we propose a self-training approach where, departing from generic keypoints, a landmark detector and descriptor is trained to improve itself, tuning the keypoints into distinctive landmarks. To this end, we propose an iterative algorithm that alternates between producing new pseudo-labels through feature clustering and learning distinctive features for each pseudo-class through contrastive learning. With a shared backbone for the landmark detector and descriptor, the keypoint locations progressively converge to stable landmarks, filtering those less stable. Compared to previous works, our approach can learn points that are more flexible in terms of capturing large viewpoint changes. We validate our method on a variety of difficult datasets, including LS3D, BBCPose, Human3.6M and PennAction, achieving new state of the art results. Code and models can be found at https://github.com/dimitrismallis/KeypointsToLandmarks/.

2.
IEEE Trans Pattern Anal Mach Intell ; 42(2): 343-356, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-30136931

RESUMEN

Our goal is to design architectures that retain the groundbreaking performance of Convolutional Neural Networks (CNNs) for landmark localization and at the same time are lightweight, compact and suitable for applications with limited computational resources. To this end, we make the following contributions: (a) we are the first to study the effect of neural network binarization on localization tasks, namely human pose estimation and face alignment. We exhaustively evaluate various design choices, identify performance bottlenecks, and more importantly propose multiple orthogonal ways to boost performance. (b) Based on our analysis, we propose a novel hierarchical, parallel and multi-scale residual architecture that yields large performance improvement over the standard bottleneck block while having the same number of parameters, thus bridging the gap between the original network and its binarized counterpart. (c) We perform a large number of ablation studies that shed light on the properties and the performance of the proposed block. (d) We present results for experiments on the most challenging datasets for human pose estimation and face alignment, reporting in many cases state-of-the-art performance. (e) We further provide additional results for the problem of facial part segmentation. Code can be downloaded from https://www.adrianbulat.com/binary-cnn-landmarks.

4.
IEEE Trans Pattern Anal Mach Intell ; 40(9): 2037-2050, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-28858786

RESUMEN

Linear regression is a fundamental building block in many face detection and tracking algorithms, typically used to predict shape displacements from image features through a linear mapping. This paper presents a Functional Regression solution to the least squares problem, which we coin Continuous Regression, resulting in the first real-time incremental face tracker. Contrary to prior work in Functional Regression, in which B-splines or Fourier series were used, we propose to approximate the input space by its first-order Taylor expansion, yielding a closed-form solution for the continuous domain of displacements. We then extend the continuous least squares problem to correlated variables, and demonstrate the generalisation of our approach. We incorporate Continuous Regression into the cascaded regression framework, and show its computational benefits for both training and testing. We then present a fast approach for incremental learning within Cascaded Continuous Regression, coined iCCR, and show that its complexity allows real-time face tracking, being 20 times faster than the state of the art. To the best of our knowledge, this is the first incremental face tracker that is shown to operate in real-time. We show that iCCR achieves state-of-the-art performance on the 300-VW dataset, the most recent, large-scale benchmark for face tracking.


Asunto(s)
Cara/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Modelos Lineales , Reconocimiento de Normas Patrones Automatizadas/métodos , Algoritmos , Bases de Datos Factuales , Humanos , Aprendizaje Automático
5.
Gigascience ; 6(10): 1-10, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29020747

RESUMEN

In plant phenotyping, it has become important to be able to measure many features on large image sets in order to aid genetic discovery. The size of the datasets, now often captured robotically, often precludes manual inspection, hence the motivation for finding a fully automated approach. Deep learning is an emerging field that promises unparalleled results on many data analysis problems. Building on artificial neural networks, deep approaches have many more hidden layers in the network, and hence have greater discriminative and predictive power. We demonstrate the use of such approaches as part of a plant phenotyping pipeline. We show the success offered by such techniques when applied to the challenging problem of image-based plant phenotyping and demonstrate state-of-the-art results (>97% accuracy) for root and shoot feature identification and localization. We use fully automated trait identification using deep learning to identify quantitative trait loci in root architecture datasets. The majority (12 out of 14) of manually identified quantitative trait loci were also discovered using our automated approach based on deep learning detection to locate plant features. We have shown deep learning-based phenotyping to have very good detection and localization accuracy in validation and testing image sets. We have shown that such features can be used to derive meaningful biological traits, which in turn can be used in quantitative trait loci discovery pipelines. This process can be completely automated. We predict a paradigm shift in image-based phenotyping bought about by such deep learning approaches, given sufficient training sets.


Asunto(s)
Aprendizaje Automático , Raíces de Plantas/clasificación , Brotes de la Planta/clasificación , Fenotipo , Raíces de Plantas/genética , Brotes de la Planta/genética , Plantas , Sitios de Carácter Cuantitativo , Triticum/clasificación , Triticum/genética
6.
Int J Comput Vis ; 122(1): 17-33, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-32269419

RESUMEN

Fitting algorithms for Active Appearance Models (AAMs) are usually considered to be robust but slow or fast but less able to generalize well to unseen variations. In this paper, we look into AAM fitting algorithms and make the following orthogonal contributions: We present a simple "project-out" optimization framework that unifies and revises the most well-known optimization problems and solutions in AAMs. Based on this framework, we describe robust simultaneous AAM fitting algorithms the complexity of which is not prohibitive for current systems. We then go on one step further and propose a new approximate project-out AAM fitting algorithm which we coin Extended Project-Out Inverse Compositional (E-POIC). In contrast to current algorithms, E-POIC is both efficient and robust. Next, we describe a part-based AAM employing a translational motion model, which results in superior fitting and convergence properties. We also show that the proposed AAMs, when trained "in-the-wild" using SIFT descriptors, perform surprisingly well even for the case of unseen unconstrained images. Via a number of experiments on unconstrained human and animal face databases, we show that our combined contributions largely bridge the gap between exact and current approximate methods for AAM fitting and perform comparably with state-of-the-art face alignment systems.

7.
IEEE Trans Image Process ; 26(2): 1040-1053, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28026767

RESUMEN

Active appearance models (AAMs) are generative models of shape and appearance that have proven very attractive for their ability to handle wide changes in illumination, pose, and occlusion when trained in the wild, while not requiring large training data set like regression-based or deep learning methods. The problem of fitting an AAM is usually formulated as a non-linear least squares one and the main way of solving it is a standard Gauss-Newton algorithm. In this paper, we extend AAMs in two ways: we first extend the Gauss-Newton framework by formulating a bidirectional fitting method that deforms both the image and the template to fit a new instance. We then formulate a second order method by deriving an efficient Newton method for AAMs fitting. We derive both methods in a unified framework for two types of AAMs, holistic and part-based, and additionally show how to exploit the structure in the problem to derive fast yet exact solutions. We perform a thorough evaluation of all algorithms on three challenging and recently annotated in-the-wild data sets, and investigate fitting accuracy, convergence properties, and the influence of noise in the initialization. We compare our proposed methods to other algorithms and show that they yield state-of-the-art results, out-performing other methods while having superior convergence properties.

8.
IEEE Trans Pattern Anal Mach Intell ; 37(6): 1312-20, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26357352

RESUMEN

We propose a face alignment framework that relies on the texture model generated by the responses of discriminatively trained part-based filters. Unlike standard texture models built from pixel intensities or responses generated by generic filters (e.g. Gabor), our framework has two important advantages. First, by virtue of discriminative training, invariance to external variations (like identity, pose, illumination and expression) is achieved. Second, we show that the responses generated by discriminatively trained filters (or patch-experts) are sparse and can be modeled using a very small number of parameters. As a result, the optimization methods based on the proposed texture model can better cope with unseen variations. We illustrate this point by formulating both part-based and holistic approaches for generic face alignment and show that our framework outperforms the state-of-the-art on multiple "wild" databases. The code and dataset annotations are available for research purposes from http://ibug.doc.ic.ac.uk/resources.


Asunto(s)
Cara/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Algoritmos , Humanos
9.
IEEE Trans Image Process ; 24(9): 2617-32, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25966479

RESUMEN

Lucas-Kanade and active appearance models are among the most commonly used methods for image alignment and facial fitting, respectively. They both utilize nonlinear gradient descent, which is usually applied on intensity values. In this paper, we propose the employment of highly descriptive, densely sampled image features for both problems. We show that the strategy of warping the multichannel dense feature image at each iteration is more beneficial than extracting features after warping the intensity image at each iteration. Motivated by this observation, we demonstrate robust and accurate alignment and fitting performance using a variety of powerful feature descriptors. Especially with the employment of histograms of oriented gradient and scale-invariant feature transform features, our method significantly outperforms the current state-of-the-art results on in-the-wild databases.


Asunto(s)
Identificación Biométrica/métodos , Cara/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Bases de Datos Factuales , Humanos
10.
IEEE Trans Pattern Anal Mach Intell ; 34(12): 2454-66, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22271825

RESUMEN

We introduce the notion of subspace learning from image gradient orientations for appearance-based object recognition. As image data are typically noisy and noise is substantially different from Gaussian, traditional subspace learning from pixel intensities very often fails to estimate reliably the low-dimensional subspace of a given data population. We show that replacing pixel intensities with gradient orientations and the ℓ2 norm with a cosine-based distance measure offers, to some extend, a remedy to this problem. Within this framework, which we coin Image Gradient Orientations (IGO) subspace learning, we first formulate and study the properties of Principal Component Analysis of image gradient orientations (IGO-PCA). We then show its connection to previously proposed robust PCA techniques both theoretically and experimentally. Finally, we derive a number of other popular subspace learning techniques, namely, Linear Discriminant Analysis (LDA), Locally Linear Embedding (LLE), and Laplacian Eigenmaps (LE). Experimental results show that our algorithms significantly outperform popular methods such as Gabor features and Local Binary Patterns and achieve state-of-the-art performance for difficult problems such as illumination and occlusion-robust face recognition. In addition to this, the proposed IGO-methods require the eigendecomposition of simple covariance matrices and are as computationally efficient as their corresponding ℓ2 norm intensity-based counterparts. Matlab code for the methods presented in this paper can be found at http://ibug.doc.ic.ac.uk/resources.

11.
IEEE Trans Neural Netw Learn Syst ; 23(10): 1624-36, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24808007

RESUMEN

We propose an exact framework for online learning with a family of indefinite (not positive) kernels. As we study the case of nonpositive kernels, we first show how to extend kernel principal component analysis (KPCA) from a reproducing kernel Hilbert space to Krein space. We then formulate an incremental KPCA in Krein space that does not require the calculation of preimages and therefore is both efficient and exact. Our approach has been motivated by the application of visual tracking for which we wish to employ a robust gradient-based kernel. We use the proposed nonlinear appearance model learned online via KPCA in Krein space for visual tracking in many popular and difficult tracking scenarios. We also show applications of our kernel framework for the problem of face recognition.


Asunto(s)
Algoritmos , Inteligencia Artificial , Biometría/métodos , Cara/anatomía & histología , Interpretación de Imagen Asistida por Computador/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Humanos , Sistemas en Línea , Análisis de Componente Principal , Técnica de Sustracción
12.
IEEE Trans Neural Netw Learn Syst ; 23(3): 526-34, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24808557

RESUMEN

We propose a robust approach to discriminant kernel-based feature extraction for face recognition and verification. We show, for the first time, how to perform the eigen analysis of the within-class scatter matrix directly in the feature space. This eigen analysis provides the eigenspectrum of its range space and the corresponding eigenvectors as well as the eigenvectors spanning its null space. Based on our analysis, we propose a kernel discriminant analysis (KDA) which combines eigenspectrum regularization with a feature-level scheme (ER-KDA). Finally, we combine the proposed ER-KDA with a nonlinear robust kernel particularly suitable for face recognition/verification applications which require robustness against outliers caused by occlusions and illumination changes. We applied the proposed framework to several popular databases (Yale, AR, XM2VTS) and achieved state-of-the-art performance for most of our experiments.


Asunto(s)
Análisis Discriminante , Cara , Reconocimiento de Normas Patrones Automatizadas/métodos , Reconocimiento de Normas Patrones Automatizadas/normas , Humanos
13.
IEEE Trans Image Process ; 20(6): 1761-7, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21118776

RESUMEN

We address the problem of subpixel registration of images assumed to be related by a pure translation. We present a method which extends gradient correlation to achieve subpixel accuracy. Our scheme is based on modeling the dominant singular vectors of the 2-D gradient correlation matrix with a generic kernel which we derive by studying the structure of gradient correlation assuming natural image statistics. Our kernel has a parametric form which offers flexibility in modeling the functions obtained from various types of image data. We estimate the kernel parameters, including the unknown subpixel shifts, using the Levenberg-Marquardt algorithm. Experiments with LANDSAT and MRI data show that our scheme outperforms recently proposed state-of-the-art phase correlation methods.


Asunto(s)
Algoritmos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Procesamiento de Señales Asistido por Computador , Técnica de Sustracción , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
14.
IEEE Trans Pattern Anal Mach Intell ; 32(10): 1899-1906, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20479492

RESUMEN

We present a robust FFT-based approach to scale-invariant image registration. Our method relies on FFT-based correlation twice: once in the log-polar Fourier domain to estimate the scaling and rotation and once in the spatial domain to recover the residual translation. Previous methods based on the same principles are not robust. To equip our scheme with robustness and accuracy, we introduce modifications which tailor the method to the nature of images. First, we derive efficient log-polar Fourier representations by replacing image functions with complex gray-level edge maps. We show that this representation both captures the structure of salient image features and circumvents problems related to the low-pass nature of images, interpolation errors, border effects, and aliasing. Second, to recover the unknown parameters, we introduce the normalized gradient correlation. We show that, using image gradients to perform correlation, the errors induced by outliers are mapped to a uniform distribution for which our normalized gradient correlation features robust performance. Exhaustive experimentation with real images showed that, unlike any other Fourier-based correlation techniques, the proposed method was able to estimate translations, arbitrary rotations, and scale factors up to 6.

15.
IEEE Trans Image Process ; 18(1): 125-39, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19095524

RESUMEN

In this paper, the problem of moment-based shape orientation and symmetry classification is jointly considered. A generalization and modification of current state-of-the-art geometric moment-based functions is introduced. The properties of these functions are investigated thoroughly using Fourier series analysis and several observations and closed-form solutions are derived. We demonstrate the connection between the results presented in this work and symmetry detection principles suggested from previous complex moment-based formulations. The proposed analysis offers a unifying framework for shape orientation/symmetry detection. In the context of symmetry classification and matching, the second part of this work presents a frequency domain method, aiming at computing a robust moment-based feature set based on a true polar Fourier representation of image complex gradients and a novel periodicity detection scheme using subspace analysis. The proposed approach removes the requirement for accurate shape centroid estimation, which is the main limitation of moment-based methods, operating in the image spatial domain. The proposed framework demonstrated improved performance, compared to state-of-the-art methods.


Asunto(s)
Algoritmos , Inteligencia Artificial , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Movimiento (Física) , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...