Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NPJ Clim Atmos Sci ; 5(1): 79, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36281291

RESUMEN

Early career (EC) Earth system scientists in the Latin America and the Caribbean region (LAC) have been facing several issues, such as limited funding opportunities, substandard scientific facilities, lack of security of tenure, and unrepresented groups equality issues. On top of this, the worsening regional environmental and climatic crises call for the need for this new generation of scientists to help to tackle these crises by increasing public awareness and research. Realizing the need to converge and step up in making a collective action to be a part of the solution, the Latin America Early Career Earth System Scientist Network (LAECESS) was created in 2016. LAECESS's primary goals are to promote regional networking, foster integrated and interdisciplinary science, organize soft skills courses and workshops, and empower Latin American EC researchers. This article is an initial step towards letting the global science community grasp the current situation and hear the early career LAC science community's perspectives. The paper also presents a series of future steps needed for better scientific and social development in the LAC region.

2.
Environ Sci Technol ; 53(17): 10269-10278, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31386807

RESUMEN

Understanding the sectoral contribution of emissions to fine particulate matter (PM2.5) offers information for air quality management, and for investigation of association with health outcomes. This study evaluates the contribution of different emission sectors to PM2.5 in 2013 for Canada using the GEOS-Chem chemical transport model, downscaled with satellite-based PM2.5. Despite the low population-weighted PM2.5 concentrations of 5.5 µg m-3 across Canada, we find that over 70% of population-weighted PM2.5 originates from Canadian sources followed by 30% from the contiguous United States. The three leading sectoral contributors to population-weighted PM2.5 over Canada are wildfires with 1.0 µg m-3 (17%), transportation with 0.96 µg m-3 (16%), and residential combustion with 0.91 µg m-3 (15%). The relative contribution to population-weighted PM2.5 of different sectors varies regionally with residential combustion as the leading contributor in Central Canada (19%), while wildfires dominate over Northern Canada (59%), Atlantic Canada (34%), and Western Canada (18%). The contribution from U.S. sources is larger over Central Canada (33%) than over Western Canada (17%), Atlantic Canada (17%), and Northern Canada (<2%). Sectoral trend analysis showed that the contribution from anthropogenic sources to population-weighted PM2.5 decreased from 7.1 µg m-3 to 3.4 µg m-3 over the past two decades.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Canadá , Monitoreo del Ambiente , Material Particulado , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...