Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
PLoS One ; 18(6): e0284022, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37294811

RESUMEN

Pollution in human-made fishing ports caused by petroleum from boats, dead fish, toxic chemicals, and effluent poses a challenge to the organisms in seawater. To decipher the impact of pollution on the microbiome, we collected surface water from a fishing port and a nearby offshore island in northern Taiwan facing the Northwestern Pacific Ocean. By employing 16S rRNA gene amplicon sequencing and whole-genome shotgun sequencing, we discovered that Rhodobacteraceae, Vibrionaceae, and Oceanospirillaceae emerged as the dominant species in the fishing port, where we found many genes harboring the functions of antibiotic resistance (ansamycin, nitroimidazole, and aminocoumarin), metal tolerance (copper, chromium, iron and multimetal), virulence factors (chemotaxis, flagella, T3SS1), carbohydrate metabolism (biofilm formation and remodeling of bacterial cell walls), nitrogen metabolism (denitrification, N2 fixation, and ammonium assimilation), and ABC transporters (phosphate, lipopolysaccharide, and branched-chain amino acids). The dominant bacteria at the nearby offshore island (Alteromonadaceae, Cryomorphaceae, Flavobacteriaceae, Litoricolaceae, and Rhodobacteraceae) were partly similar to those in the South China Sea and the East China Sea. Furthermore, we inferred that the microbial community network of the cooccurrence of dominant bacteria on the offshore island was connected to dominant bacteria in the fishing port by mutual exclusion. By examining the assembled microbial genomes collected from the coastal seawater of the fishing port, we revealed four genomic islands containing large gene-containing sequences, including phage integrase, DNA invertase, restriction enzyme, DNA gyrase inhibitor, and antitoxin HigA-1. In this study, we provided clues for the possibility of genomic islands as the units of horizontal transfer and as the tools of microbes for facilitating adaptation in a human-made port environment.


Asunto(s)
Microbiota , Rhodobacteraceae , Animales , Humanos , Océano Pacífico , ARN Ribosómico 16S/genética , Taiwán , Agua de Mar/microbiología , Rhodobacteraceae/genética
2.
Genes (Basel) ; 13(6)2022 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-35741857

RESUMEN

The common carp is a hypoxia-tolerant fish, and the understanding of its ability to live in low-oxygen environments has been applied to human health issues such as cancer and neuron degeneration. Here, we investigated differential gene expression changes during hypoxia in five common carp organs including the brain, the gill, the head kidney, the liver, and the intestine. Based on RNA sequencing, gene expression changes under hypoxic conditions were detected in over 1800 genes in common carp. The analysis of these genes further revealed that all five organs had high expression-specific properties. According to the results of the GO and KEGG, the pathways involved in the adaptation to hypoxia provided information on responses specific to each organ in low oxygen, such as glucose metabolism and energy usage, cholesterol synthesis, cell cycle, circadian rhythm, and dopamine activation. DisGeNET analysis showed that some human diseases such as cancer, diabetes, epilepsy, metabolism diseases, and social ability disorders were related to hypoxia-regulated genes. Our results suggested that common carp undergo various gene regulations in different organs under hypoxic conditions, and integrative bioinformatics may provide some potential targets for advancing disease research.


Asunto(s)
Carpas , Hipoxia , Animales , Perfilación de la Expresión Génica , Humanos , Hipoxia/genética , Hipoxia/metabolismo , Oxígeno , Transcriptoma/genética
3.
J Biol Chem ; 298(6): 101957, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35452675

RESUMEN

Japanese encephalitis is a mosquito-borne disease caused by the Japanese encephalitis virus (JEV) that is prevalent in Asia and the Western Pacific. Currently, there is no effective treatment for Japanese encephalitis. Curcumin (Cur) is a compound extracted from the roots of Curcuma longa, and many studies have reported its antiviral and anti-inflammatory activities. However, the high cytotoxicity and very low solubility of Cur limit its biomedical applications. In this study, Cur carbon quantum dots (Cur-CQDs) were synthesized by mild pyrolysis-induced polymerization and carbonization, leading to higher water solubility and lower cytotoxicity, as well as superior antiviral activity against JEV infection. We found that Cur-CQDs effectively bound to the E protein of JEV, preventing viral entry into the host cells. In addition, after continued treatment of JEV with Cur-CQDs, a mutant strain of JEV was evolved that did not support binding of Cur-CQDs to the JEV envelope. Using transmission electron microscopy, biolayer interferometry, and molecular docking analysis, we revealed that the S123R and K312R mutations in the E protein play a key role in binding Cur-CQDs. The S123 and K312 residues are located in structural domains II and III of the E protein, respectively, and are responsible for binding to receptors on and fusing with the cell membrane. Taken together, our results suggest that the E protein of flaviviruses represents a potential target for the development of CQD-based inhibitors to prevent or treat viral infections.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Puntos Cuánticos , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Carbono , Virus de la Encefalitis Japonesa (Especie)/química , Virus de la Encefalitis Japonesa (Especie)/genética , Encefalitis Japonesa/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Proteínas del Envoltorio Viral/metabolismo
4.
FASEB J ; 35(10): e21915, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34496088

RESUMEN

During development, erythroid cells are generated by two waves of hematopoiesis. In zebrafish, primitive erythropoiesis takes place in the intermediate cell mass region, and definitive erythropoiesis arises from the aorta-gonad mesonephros. TALE-homeoproteins Meis1 and Pbx1 function upstream of GATA1 to specify the erythroid lineage. Embryos lacking Meis1 or Pbx1 have weak gata1 expression and fail to produce primitive erythrocytes. Nevertheless, the underlying mechanism of how Meis1 and Pbx1 mediate gata1 transcription in erythrocytes remains unclear. Here we show that Hif1α acts downstream of Meis1 to mediate gata1 expression in zebrafish embryos. Inhibition of Meis1 expression resulted in suppression of hif1a expression and abrogated primitive erythropoiesis, while injection with in vitro-synthesized hif1α mRNA rescued gata1 transcription in Meis1 morphants and recovered their erythropoiesis. Ablation of Hif1α expression either by morpholino knockdown or Crispr-Cas9 knockout suppressed gata1 transcription and abrogated primitive erythropoiesis. Results of chromatin immunoprecipitation assays showed that Hif1α associates with hypoxia-response elements located in the 3'-flanking region of gata1 during development, suggesting that Hif1α regulates gata1 expression in vivo. Together, our results indicate that Meis1, Hif1α, and GATA1 indeed comprise a hierarchical regulatory network in which Hif1α acts downstream of Meis1 to activate gata1 transcription through direct interactions with its cis-acting elements in primitive erythrocytes.


Asunto(s)
Células Eritroides/metabolismo , Eritropoyesis , Factor de Transcripción GATA1/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Inmunoprecipitación de Cromatina , Eritrocitos/citología , Eritrocitos/metabolismo , Células Eritroides/citología , Eritropoyesis/genética , Factor de Transcripción GATA1/genética , Regulación del Desarrollo de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/deficiencia , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/deficiencia , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/deficiencia , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Transcripción Genética , Pez Cebra/sangre , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
5.
J Comput Biol ; 28(7): 674-686, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33512268

RESUMEN

Hypoxia-inducible factors (HIFs) and survivin (Birc5) genes are often considered important cancer drug targets for molecularly targeted therapy, as both genes play important roles in the cellular differentiation and development of neuronal cells. Pathway enrichment analysis is predominantly applied when interpreting the correlated behaviors of activated gene clusters. Traditional enrichment analysis is evaluated via p-values only, regardless of gene expression fold-change levels, gene locations, and possible hidden interactions within a pathway. Here, we combined these factors to retrieve significant pathways, as compared with traditional approaches. We performed RNA-seq analyses on Birc5a and HIF2α knocked down in zebrafish during the embryogenesis stage. Regarding Birc5a, two additional biological pathways, sphingolipid metabolism and herpes simplex infection, were identified; whereas for HIF2α, four biological pathways were re-identified, including ribosome biogenesis in eukaryotes, proteasome, purine metabolism, and complement and coagulation cascades. Our proposed approaches identified additional significant pathways directly related to cell differentiation or cancer, also providing comprehensive mechanisms for designing further biological experiments.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Survivin/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Algoritmos , Animales , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ARN , Pez Cebra/genética
6.
FEBS J ; 285(15): 2900-2921, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29917313

RESUMEN

Vibrio cholerae, the causative pathogen of the life-threatening infection cholera, encodes two copies of ß-ketoacyl-acyl carrier protein synthase III (vcFabH1 and vcFabH2). vcFabH1 and vcFabH2 are pathogenic proteins associated with fatty acid synthesis, lipid metabolism, and potential applications in biofuel production. Our biochemical assays characterize vcFabH1 as exhibiting specificity for acetyl-CoA and CoA thioesters with short acyl chains, similar to that observed for FabH homologs found in most gram-negative bacteria. vcFabH2 prefers medium chain-length acyl-CoA thioesters, particularly octanoyl-CoA, which is a pattern of specificity rarely seen in bacteria. Structural characterization of one vcFabH1 and six vcFabH2 structures determined in either apo form or in complex with acetyl-CoA/octanoyl-CoA indicate that the substrate-binding pockets of vcFabH1 and vcFabH2 are of different sizes, accounting for variations in substrate chain-length specificity. An unusual and unique feature of vcFabH2 is its C-terminal fragment that interacts with both the substrate-entrance loop and the dimer interface of the enzyme. Our discovery of the pattern of substrate specificity of both vcFabH1 and vcFabH2 can potentially aid the development of novel antibacterial agents against V. cholerae. Additionally, the distinctive substrate preference of FabH2 in V. cholerae and related facultative anaerobes conceivably make it an attractive component of genetically engineered bacteria used for commercial biofuel production.


Asunto(s)
3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/química , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/metabolismo , Vibrio cholerae/enzimología , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/genética , Acetilcoenzima A/metabolismo , Acilcoenzima A/química , Acilcoenzima A/metabolismo , Antibacterianos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Biocombustibles , Cristalografía por Rayos X , Cisteína/genética , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato
7.
BMC Syst Biol ; 12(Suppl 4): 45, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29745842

RESUMEN

BACKGROUND: Differential gene expression analysis using RNA-seq data is a popular approach for discovering specific regulation mechanisms under certain environmental settings. Both gene ontology (GO) and KEGG pathway enrichment analysis are major processes for investigating gene groups that participate in common biological responses or possess related functions. However, traditional approaches based on differentially expressed genes only detect a few significant GO terms and pathways, which are frequently insufficient to explain all-inclusive gene regulation mechanisms. METHODS: Transcriptomes of survivin (birc5) gene knock-down experimental and wild-type control zebrafish embryos were sequenced and assembled, and a differential expression (DE) gene list was obtained for traditional functional enrichment analysis. In addition to including DE genes with significant fold-change levels, we considered additional associated genes near or overlapped with differentially expressed long noncoding RNAs (DE lncRNAs), which may directly or indirectly activate or inhibit target genes and play important roles in regulation networks. Both the original DE gene list and the additional DE lncRNA-associated genes were combined to perform a comprehensive overrepresentation analysis. RESULTS: In this study, a total of 638 DE genes and 616 DE lncRNA-associated genes (lncGenes) were leveraged simultaneously in searching for significant GO terms and KEGG pathways. Compared to the traditional approach of only using a differential expression gene list, the proposed method of employing DE lncRNA-associated genes identified several additional important GO terms and KEGG pathways. In GO enrichment analysis, 60% more GO terms were obtained, and several neuron development functional terms were retrieved as complete annotations. We also observed that additional important pathways such as the FoxO and MAPK signaling pathways were retrieved, which were shown in previous reports to play important roles in apoptosis and neuron development functions regulated by the survivin gene. CONCLUSIONS: We demonstrated that incorporating genes near or overlapped with DE lncRNAs into the DE gene list outperformed the traditional enrichment analysis method for effective biological functional interpretations. These hidden interactions between lncRNAs and target genes could facilitate more comprehensive analyses.


Asunto(s)
Biología Computacional , ARN Largo no Codificante/genética , Animales , Apoptosis/genética , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ontología de Genes , Transducción de Señal/genética , Survivin/deficiencia , Survivin/genética , Pez Cebra/embriología , Pez Cebra/genética
8.
Biomaterials ; 109: 12-22, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27639528

RESUMEN

Angiogenesis is the process of formation of new blood vessels, which is essential to human biology, and also plays a crucial role in several pathologies such as tumor growth and metastasis, exudative age-related macular degeneration, and ischemia. Vascular endothelial growth factor (VEGF), in particular, VEGF-A165 is the most important pro-angiogenic factor for angiogenesis. Thus, blocking the interaction between VEGFs and their receptors is considered an effective anti-angiogenic strategy. We demonstrate for that first time that bovine serum albumin-capped graphene oxide (BSA-GO) exhibits high stability in physiological saline solution and possesses ultrastrong binding affinity towards VEGF-A165 [dissociation constant (Kd) ∼3 × 10-12 M], which is at least five orders of magnitude stronger than that of high-abundant plasma proteins such as human serum albumin, fibrinogen, transferrin, and immunoglobulin G. Due to the surprising binding specificity of BSA-GO for VEGF-A165 in complex plasma fluid, we have also studied the anti-angiogenic effects in vitro and in vivo. Results show that BSA-GO not only effectively inhibits the proliferation, migration and tube formation of human umbilical vein endothelial cells, but also strongly disturbs the physiological process of angiogenesis in chick chorioallantoic membrane and blocks VEGF-A165-induced blood vessel formation in rabbit corneal neovascularization. Our findings indicate that GO nanomaterials can potentially act as therapeutic anti-angiogenic agents via ultrastrong VEGF adsorption and its activity suppression.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Grafito/química , Óxidos/química , Albúmina Sérica Bovina/química , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Bovinos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Embrión de Pollo , Membrana Corioalantoides/irrigación sanguínea , Membrana Corioalantoides/efectos de los fármacos , Neovascularización de la Córnea/patología , Ojo/efectos de los fármacos , Grafito/farmacología , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Nanoestructuras , Neovascularización Fisiológica/efectos de los fármacos , Unión Proteica , Conejos , Propiedades de Superficie , Termodinámica
9.
Genome Announc ; 2(5)2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25301655

RESUMEN

Thermoanaerobacterium saccharolyticum strain NTOU1 has the ability to utilize several kinds of sugars in lignocellulosic biomass to produce ethanol more efficiently than other bacteria. Here, we report the draft genome sequence and annotation of this strain, which may provide insights into the possible genes and metabolic pathways related to ethanol production.

10.
PLoS One ; 9(7): e101980, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25000307

RESUMEN

The liver plays a vital role in metabolism, detoxification, digestion, and the maintenance of homeostasis. During development, the vertebrate embryonic liver undergoes a series of morphogenic processes known as hepatogenesis. Hepatogenesis can be separated into three interrelated processes: endoderm specification, hepatoblast differentiation, and hepatic outgrowth. Throughout this process, signaling molecules and transcription factors initiate and regulate the coordination of cell proliferation, apoptosis, differentiation, intercellular adhesion, and cell migration. Hifs are already recognized to be essential in embryonic development, but their role in hepatogenesis remains unknown. Using the zebrafish embryo as a model organism, we report that the lack of Hif2-alpha but not Hif1-alpha blocks hepatic outgrowth. While Hif2-alpha is not involved in hepatoblast specification, this transcription factor regulates hepatocyte cell proliferation during hepatic outgrowth. Furthermore, we demonstrated that the lack of Hif2-alpha can reduce the expression of liver-enriched gene 1 (leg1), which encodes a secretory protein essential for hepatic outgrowth. Additionally, exogenous mRNA expression of leg1 can rescue the small liver phenotype of hif2-alpha morphants. We also showed that Hif2-alpha directly binds to the promoter region of leg1 to control leg1 expression. Interestingly, we discovered overrepresented, high-density Hif-binding sites in the potential upstream regulatory sequences of leg1 in teleosts but not in terrestrial mammals. We concluded that hif2-alpha is a key factor required for hepatic outgrowth and regulates leg1 expression in zebrafish embryos. We also proposed that the hif2-alpha-leg1 axis in liver development may have resulted from the adaptation of teleosts to their environment.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hígado/embriología , Transcripción Genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Pez Cebra/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proliferación Celular/efectos de los fármacos , Cobalto/farmacología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Factor de Crecimiento de Hepatocito/metabolismo , Intestinos/embriología , Hígado/citología , Tamaño de los Órganos/efectos de los fármacos , Páncreas Exocrino/embriología , Fenotipo , Regiones Promotoras Genéticas/genética , Elementos de Respuesta/genética , Vía de Señalización Wnt/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA