Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Environ Res ; 96(2): e11000, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38385887

RESUMEN

Heavy metals are the main pollutants in water and are an important global problem that threatens human health and ecosystems. In recent years, there has been an increasing interest in the use of genetically modified bacteria as an eco-friendly method to solve heavy metal pollution problems. The goal of this study was to generate genetically modified Escherichia coli expressing human metallothioneins (hMT2A and hMT3) and to determine their tolerance, bioaccumulation, and biosorption capacity to lead (Pb2+ ). Recombinant MT2A and MT3 strains expressing MT were successfully generated. Minimum inhibition concentrations (MIC) of Pb for MT2A and MT3 were found to be 1750 and 2000 mg L-1 , respectively. Pb2+ resistance and bioaccumulation capacity of MT3 were higher than MT2A. Therefore, only MT3 biosorbent was used in Pb2+ biosorption, and its efficiency was examined by performing experiments in a batch system. Pb2+ biosorption by MT3 was evaluated in terms of isotherms, kinetics, and thermodynamics. The results showed that Pb biosorption fits to the Langmuir isotherm model and the pseudo-first-order kinetic model, and the reaction is exothermic. The maximum Pb2+ capacity of the biosorbent was 50 mg Pb2+ g-1 . The potential of MT3 in Pb biosorption was characterized by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and scanning transmission electron microscopy (STEM) analyses. The desorption study showed that the sorbent had up to 74% recovery and could be effectively used four times. These findings imply that this biosorbent can be applied as a promising, precise, and effective means of removing Pb2+ from contaminated waters. PRACTITIONER POINTS: In this study, the tolerance levels, bioaccumulation, and biosorption capacities of Pb in aqueous solutions were determined for the first time in recombinant MT2A and MT3 strains in which human MT2A and MT3 genes were cloned. The biosorbent of MT3, which was determined to be more effective in Pb bioaccumulation, was synthesized and used in Pb biosorption. The Pb biosorption mechanism of MT3 biosorbent was identified using isotherm modeling, kinetic modeling, and thermodynamic studies. The maximum Pb removal percentage capacity of the biosorbent was 90%, whereas the maximum biosorption capacity was up to 50 mg Pb2+ g-1 . These results indicated that MT3 biosorbent has a higher Pb biosorption capacity than existing recombinant biosorbents. MT3 biosorbent can be used as a promising and effective biosorbent for removing Pb from wastewater.


Asunto(s)
Ecosistema , Plomo , Humanos , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica , Bacterias , Escherichia coli/genética , Metalotioneína/genética
2.
Water Sci Technol ; 87(12): 3017-3030, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37387427

RESUMEN

Bacterial biomasses are suitable and inexpensive biosorbents for the removal of metal ions. The Gram-negative betaproteobacterium Cupriavidus necator H16 is found in soil and freshwater environments. In this study, C. necator H16 was used to remove chromium (Cr), arsenic (As), aluminum (Al), and cadmium (Cd) ions from water. Minimum inhibition concentration (MIC) values of C. necator to Cr, As, Al, and Cd were found as 76, 69, 341, and 275 mg/L, respectively. The highest rates of Cr, As, Al, and Cd bioremoval were 45, 60, 54, and 78%, respectively. pH levels between 6.0 and 8.0 and an average temperature of 30 °C were optimum for the most efficient bioremoval. Scanning electron microscopy (SEM) images of Cd-treated cells showed that the morphology of the cells was significantly impaired compared to the control. Shifts in the Fourier transform infrared spectroscopy analysis (FTIR) spectra of the Cd-treated cell walls also confirmed the presence of active groups. As a result, it can be said that C. necator H16 has a moderate bioremoval efficiency for Cr, As, and Al and a high bioremoval efficiency for Cd.


Asunto(s)
Arsénico , Cupriavidus necator , Cadmio , Agua , Metales , Aluminio , Cromo , Iones
4.
J Food Biochem ; 46(4): e13881, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34346512

RESUMEN

The purpose of this study was to investigate the potential side-effects of lead acetate (LA), which is toxic to the nerves, blood and muscles, in the rat brain. The neuroprotective effects of pomegranate juice (PJ) against LA exposure were also observed. The experiment involved 28 male Wistar albino rats aged 12 weeks. These were divided into four groups: Control, PJ, LA and LA+PJ. Stereological techniques were employed to determine hippocampal volume in each rat brain. Biochemical investigations and histopathological examinations were also performed. Analysis demonstrated a significant decrease in hippocampal volume in the LA group compared to the control group (p < .05). The stereology results also indicated that PJ has protective effects when compared with the LA and LA+PJ groups. A significant increase was also determined in malondialdehyde (MDA) levels and glutathione S-transferase (GST) activity in the LA group compared to the control group, in contrast to glutathione (GSH) levels and carboxylesterase (CaE) and acetylcholinesterase (AchE) activities. MDA and GST activity decreased significantly in the LA+PJ group compared to the LA group in contrast to GSH levels and CaE and AchE activities. Histopathological examination revealed a number of degenerative changes in the LA group. Exposure to LA adversely affects the hippocampus on the male rat brain. It might also be suggested that PJ may ameliorate these deleterious effects.


Asunto(s)
Jugos de Frutas y Vegetales , Plomo , Síndromes de Neurotoxicidad , Compuestos Organometálicos , Granada (Fruta) , Acetilcolinesterasa , Animales , Antioxidantes/farmacología , Femenino , Glutatión , Plomo/toxicidad , Masculino , Compuestos Organometálicos/toxicidad , Ratas , Ratas Wistar
5.
Environ Sci Pollut Res Int ; 29(17): 25194-25208, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34839436

RESUMEN

Bisphenol A (BPA), an endocrine-disrupting chemical (EDC), has strong potential for daily exposure to humans and animals due to its persistence and widespread in the environment, so its effects directly concern public health. Although invertebrates represent important components of aquatic ecosystems and are at significant risk of exposure, there is little information about the biological effects of EDCs in these organisms. Astacus leptodactylus used in this study is one of the most consumed and exported freshwater species in Europe. In this study, the 96-h effect of BPA on A. leptodactylus was examined using various biomarkers. The LC50 value of BPA was determined as 96.45 mg L-1. After 96 h of exposure to BPA, there were increases in superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione S-transferase (GST), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) activities and levels of malondialdehyde (MDA), and total oxidant status context (TOSC), and there were decreases in the activity of glutathione reductase (GR), carboxylesterase (CaE), acetylcholinesterase (AChE), Na+/K+ ATPase, Mg2+ ATPase, Ca2+ ATPase, and total ATPase and the total antioxidant context (TAC). From the results of this study, it can be concluded that BPA has significant toxic effects on A. leptodactylus based on the selected biochemical parameters of antioxidant, cholinergic, detoxification, and metabolic systems in crayfish even at low doses. Thus, it can be said that BPA can seriously threaten the aquatic ecosystem and public health.


Asunto(s)
Astacoidea , Ecosistema , Acetilcolinesterasa/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Antioxidantes/metabolismo , Compuestos de Bencidrilo , Biomarcadores/metabolismo , Estrés Oxidativo , Fenoles , Superóxido Dismutasa/metabolismo
6.
Acta Chim Slov ; 68(3): 521-531, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34897546

RESUMEN

Thiamethoxam (Thmx) is a globally used neonicotinoid pesticide contaminated in freshwater ecosystems with residues detected in fishery products. Astacus leptodactylus is a popular freshwater crustacean that is cultivated and exported in many countries. In this study, we investigated the acute toxic effects of Thmx on A. leptodactylus using various biomarkers (acetylcholinesterase, carboxylesterase, glutathione S-transferase, glutathione, superoxide dismutase, glutathione peroxidase, glutathione reductase, and adenosinetriphosphatases). The 96-h LC50 value of Thmx was calculated as 8.95 mg active ingredient L-1. As the dose of Thmx increased, oxidative stress was induced by the inhibition/activation of antioxidant enzymes, while the activities of acetylcholinesterase, carboxylesterase and adenosinetriphosphatases were inhibited. As a result, it can be said that Thmx has highly toxic effects on crayfish, therefore they are under threat in the areas where this pesticide is used.


Asunto(s)
Acetilcolinesterasa/metabolismo , Adenosina Trifosfatasas/metabolismo , Biomarcadores/metabolismo , Insecticidas/toxicidad , Estrés Oxidativo/efectos de los fármacos , Tiametoxam/toxicidad , Animales , Astacoidea , Carboxilesterasa/metabolismo , Inhibidores de la Colinesterasa/toxicidad , Contaminantes Químicos del Agua/toxicidad
7.
Environ Toxicol Chem ; 40(10): 2846-2860, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34255878

RESUMEN

Pesticide exposure is thought to be one of the common reasons for the decline in amphibian populations, a phenomenon that is a major threat to global biodiversity. Although the single effects of pesticides on amphibians have been well studied, the effects of mixtures are not well known. The present study aimed to evaluate the acute toxicity of the insecticide thiacloprid and the fungicide trifloxystrobin on early developmental stages of Xenopus laevis using various biochemical markers (glutathione S-transferase, glutathione reductase, acetylcholinesterase, carboxylesterase, glutathione peroxidase, catalase, alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, Na+ K+ -adenosine triphosphatase [ATPase], Ca2+ -ATPase, Mg2+ -ATPase, and total ATPase). The median lethal concentrations (LC50s) of thiacloprid and trifloxystrobin were determined to be 3.41 and 0.09 mg a.i. L-1 , respectively. Tadpoles were exposed to the LC50, LC50/2, LC50/10, LC50/20, LC50/50, and LC50/100 of these pesticides. Both pesticides significantly affected (inhibited/activated) the biomarkers even at low concentrations. The pesticides showed a synergistic effect when applied as a mixture and altered the biomarkers more than when applied individually. In conclusion, we can assume that tadpoles are threatened by these pesticides even at environmentally relevant concentrations. Our findings provide important data to guide management of the ecotoxicological effects of these pesticides on nontarget amphibians.  Environ Toxicol Chem 2021;40:2846-2860. © 2021 SETAC.


Asunto(s)
Plaguicidas , Acetatos , Acetilcolinesterasa , Adenosina Trifosfatasas/farmacología , Animales , Biomarcadores , Iminas , Larva , Neonicotinoides , Plaguicidas/toxicidad , Estrobilurinas , Tiazinas , Xenopus laevis
8.
Cell Mol Biol (Noisy-le-grand) ; 65(5): 3-8, 2019 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-31304900

RESUMEN

Cyclotrichium niveum is an endemic plant for Turkey and it appears to have in vitro antioxidant and acetylcholinesterase inhibition properties. To the best of our knowledge, there has been no study on the in vivo effects of this plant. Therefore, the purpose of this study was to evaluate the effects of C. niveum on lead (Pb)-acetate-induced potential alterations in brain acetylcholinesterase activity, as well as oxidative stress in male rats. The rats were randomly assigned to control, Pb-acetate, C. niveum and Pb-acetate+ C. niveum groups. Pb-acetate was provided in drinking water (500 ppm), and C. niveum was administered via orogastric gavage (4 ml/kg) for 30 days. The acetylcholinesterase activity in the brain significantly decreased only in the Pb-acetate group. The malondialdehyde level significantly increased, and the reduced glutathione activity decreased in the Pb-acetate group. The reduced glutathione and glutathione-S-transferase activities of the C. niveum group were higher than the control group. No Pb was detected on a ppb level in the brain tissue of the control and C. niveum groups, while it was detected in the brains of the rats in the Pb-acetate and Pb-acetate+ C. niveum groups (185+8.98 ppb and 206+56.65 ppb, respectively). The data collected in this study suggested that C. niveum may reduce inhibition of brain AChE activity and oxidative stress against Pb-acetate-induced alterations in the brain of male rats.


Asunto(s)
Acetilcolinesterasa/metabolismo , Antioxidantes/farmacología , Encéfalo/metabolismo , Inhibidores de la Colinesterasa/farmacología , Lamiaceae/química , Fármacos Neuroprotectores/farmacología , Compuestos Organometálicos/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Administración Oral , Animales , Glutatión/metabolismo , Glutatión Reductasa/metabolismo , Glutatión Transferasa/metabolismo , Masculino , Malondialdehído/metabolismo , Compuestos Organometálicos/efectos adversos , Ratas , Ratas Wistar , Turquía
9.
Arch Physiol Biochem ; 124(1): 80-87, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28817314

RESUMEN

In this study, the effect of geraniol (50 mg/kg for 30 d), a natural antioxidant and repellent/antifeedant monoterpene, in a rat model of lead acetate-induced (500 ppm for 30 d) liver damage was evaluated. Hepatic malondialdehyde increased in the lead acetate group. Reduced glutathione unchanged, but glutathione S-transferase, glutathione reductase, as well as carboxylesterase activities decreased in geraniol, lead acetate and geraniol + lead acetate groups. 8-OhDG immunoreactivity, mononuclear cell infiltrations and hepatic lead concentration were lower in the geraniol + lead acetate group than the lead acetate group. Serum aspartate aminotransferase and alanine aminotransferase activities increased in the Pb acetate group. In conclusion, lead acetate causes oxidative and toxic damage in the liver and this effect can reduce with geraniol treatment. However, we first observed that lead acetate, as well as geraniol, can affect liver carboxylesterase activity.


Asunto(s)
Carboxilesterasa/antagonistas & inhibidores , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Repelentes de Insectos/uso terapéutico , Intoxicación por Plomo/prevención & control , Hígado/efectos de los fármacos , Sustancias Protectoras/uso terapéutico , Terpenos/uso terapéutico , Monoterpenos Acíclicos , Animales , Antioxidantes/efectos adversos , Antioxidantes/uso terapéutico , Biomarcadores/sangre , Biomarcadores/metabolismo , Carboxilesterasa/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/enzimología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/fisiopatología , Glutatión/química , Glutatión/metabolismo , Glutatión Reductasa/metabolismo , Glutatión Transferasa/metabolismo , Repelentes de Insectos/efectos adversos , Intoxicación por Plomo/metabolismo , Intoxicación por Plomo/patología , Intoxicación por Plomo/fisiopatología , Peroxidación de Lípido/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Hígado/fisiopatología , Masculino , Compuestos Organometálicos/antagonistas & inhibidores , Compuestos Organometálicos/toxicidad , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/efectos adversos , Distribución Aleatoria , Ratas Wistar , Terpenos/efectos adversos
10.
J Biochem Mol Toxicol ; 31(9)2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28467669

RESUMEN

Testis tissue is prone to oxidation because its plasma membrane contains many polyunsaturated fatty acids. Naringenin is a plant-derived natural flavonoid. We investigated the possible ameliorative role of naringenin on the hydrogen peroxide (H2 O2 )-induced testicular damage in Wistar rats. Animals received 12 mg/kg H2 O2 by intraperitoneal injection, and 50 mg/kg naringenin via orogastric gavage for 4 weeks. In the H2 O2 group, the testis malondialdehyde level increased, while the amount of reduced glutathione, glutathione transferase activities, and the testis weight decreased. There were severe testicular damages in the H2 O2 group otherwise their grade were less in the naringenin + H2 O2 group. However, the serum testosterone concentrations decreased in both the H2 O2 and the naringenin + H2 O2 groups. The testicular zinc and calcium levels reduced in the H2 O2 -treated rats. In conclusion, the administration of H2 O2 caused oxidative stress in the testes and naringenin supplementation decreased the H2 O2 -induced effects, except for changes in testosterone levels.


Asunto(s)
Flavanonas/farmacología , Peróxido de Hidrógeno/toxicidad , Estrés Oxidativo/efectos de los fármacos , Testículo/metabolismo , Animales , Glutatión/metabolismo , Glutatión Transferasa/metabolismo , Masculino , Ratas , Ratas Wistar , Testículo/patología
11.
Chemosphere ; 144: 2024-35, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26595308

RESUMEN

In this study, we evaluated the toxic effects of a glyphosate-based herbicide (GBH) and a methidathion-based insecticide (MBI), individually and in combination, on premetamorphic tadpoles of three anuran species: Pelophylax ridibundus, Xenopus laevis, and Bufotes viridis. Based on the determined 96-h LC50 values of each species, the effects of a series of sublethal concentrations of single pesticides and their mixtures after 96-h exposure and also the time-related effects of a high sublethal concentration of each pesticide were evaluated, with determination of changes in selected biomarkers: glutathione S-transferase (GST), glutathione reductase (GR), acetylcholinesterase (AChE), carboxylesterase (CaE), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH). Also, the integrated biomarker response (IBR) was used to assess biomarker responses and quantitatively evaluate toxicological effects. Isozyme differences in CaE inhibition were assessed using native page electrophoresis; results showed that GBH to cause structural changes in the enzyme but not CaE inhibition in P. ridibundus. In general, single MBI and pesticide mixture exposures increased GST activity, while single GBH exposures decreased GST activity in exposed tadpoles. The AChE and CaE activities were inhibited after exposure to all single MBI and pesticide mixtures. Also, higher IBR values and GST, GR, AST, and LDH activities were determined for pesticide mixtures compared with single-pesticide exposure. This situation may be indicative of a synergistic interaction between pesticides and a sign of a more stressful condition.


Asunto(s)
Inhibidores de la Colinesterasa/toxicidad , Glicina/análogos & derivados , Herbicidas/toxicidad , Insecticidas/toxicidad , Compuestos Organotiofosforados/toxicidad , Contaminantes Químicos del Agua/toxicidad , Acetilcolinesterasa/metabolismo , Animales , Aspartato Aminotransferasas/metabolismo , Biomarcadores/metabolismo , Bufonidae , Carboxilesterasa/antagonistas & inhibidores , Carboxilesterasa/metabolismo , Glutatión Reductasa/metabolismo , Glutatión Transferasa/metabolismo , Glicina/toxicidad , L-Lactato Deshidrogenasa/metabolismo , Larva/efectos de los fármacos , Larva/enzimología , Ranidae , Xenopus laevis , Glifosato
12.
Environ Toxicol ; 30(9): 1091-101, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24616035

RESUMEN

The toxic effects of Gusathion (GUS), which is a commercial organophosphate (OP) pesticide, and also its active ingredient, azinphos methyl (AzM), are evaluated comparatively with in vitro and in vivo studies. Initially, the 96-h LC50 values of AzM and GUS were estimated for two different life stages of Xenopus laevis, embryos, and tadpoles. The actual AzM concentrations in exposure media were monitored by high-performance liquid chromatography. Also, the sub-lethal effects of these compounds to tadpoles were determined 24 h later at exposure concentrations of 0.1 and 1 mg/L using selected biomarker enzymes such as acetylcholinesterase (AChE), carboxylesterase (CaE), glutathione S-transferase (GST), glutathione reductase, lactate dehydrogenase, and aspartate aminotrasferase. Differences in AChE inhibition capacities of AzM and GUS were evaluated under in vitro conditions between frogs and fish in the second part of this study. The AChE activities in a pure electrical eel AChE solution and in brain homogenates of adult Cyprinus carpio, Pelophylax ridibundus, and X. laevis were assayed after in vitro exposure to 0.05, 0.5, 5, and 50 mg/L concentrations of AzM and GUS. According to in vivo studies AChE, CaE and GST are important biomarkers of the effect of OP exposure while CaE may be more effective in short-term, low-concentration exposures. The results of in vitro studies showed that amphibian brain AChEs were relatively more resistant to OP exposure than fish AChEs. The resistance may be the cause of the lower toxicity/lethality of OP compounds to amphibians than to fish.


Asunto(s)
Azinfosmetilo/toxicidad , Encéfalo/efectos de los fármacos , Insecticidas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Animales , Biomarcadores/metabolismo , Encéfalo/enzimología , Encéfalo/metabolismo , Carboxilesterasa/metabolismo , Carpas/metabolismo , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Glutatión Transferasa/metabolismo , Larva/efectos de los fármacos , Larva/metabolismo , Ranidae/metabolismo , Xenopus/crecimiento & desarrollo , Xenopus/metabolismo
13.
Biotechnol J ; 1(2): 203-8, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16892249

RESUMEN

The production of L-asparaginase, an enzyme widely used in cancer chemotherapy, is mainly regulated by carbon catabolite repression and oxygen. This study was carried out to understand how different carbon sources and Vitreoscilla hemoglobin (VHb) affect the production of this enzyme in Pseudomonas aeruginosa and its VHb-expressing recombinant strain (PaJC). Both strains grown with various carbon sources showed a distinct profile of the enzyme activity. Compared to no carbohydrate supplemented medium, glucose caused a slight repression of L-asparaginase in P. aeruginosa, while it stimulated it in the PaJC strain. Glucose, regarded as one of the inhibitory sugars for the production L-asparaginase by other bacteria, was determined to be the favorite carbon source compared to lactose, glycerol and mannitol. Furthermore, contrary to common knowledge of oxygen repression of L-asparaginase in other bacteria, oxygen uptake provided by VHb was determined to even stimulate the L-asparaginase synthesis by P. aeruginosa. This study, for the first time, shows that in P. aeruginosa utilizing a recombinant oxygen uptake system, VHb, L-asparaginase synthesis is stimulated by glucose and other carbohydrate sources compared to the host strain. It is concluded that carbon catabolite and oxygen repression of L-asparaginase in fermentative bacteria is not the case for a respiratory non-fermentative bacterium like P. aeruginosa.


Asunto(s)
Asparaginasa/biosíntesis , Proteínas Bacterianas/metabolismo , Técnicas de Cultivo de Célula/métodos , Mejoramiento Genético/métodos , Glucosa/metabolismo , Hemoglobinas/metabolismo , Pseudomonas aeruginosa/enzimología , Antineoplásicos/aislamiento & purificación , Antineoplásicos/metabolismo , Asparaginasa/aislamiento & purificación , Asparaginasa/uso terapéutico , Proteínas Bacterianas/genética , Hemoglobinas/genética , Ingeniería de Proteínas/métodos , Pseudomonas aeruginosa/clasificación , Pseudomonas aeruginosa/genética , Especificidad de la Especie , Hemoglobinas Truncadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...