Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 18356, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37884549

RESUMEN

The present research shows the application of Taguchi's design of experiment approach to optimize the process parameters for the removal of phenol onto surface of Saccharum officinarum biomass activated carbon (SBAC) from an aqueous solution to maximize adsorption capacity of SBAC. The effect of adsorption parameters viz. adsorbent dose (m), temperature (T), initial concentration (C0) and mixing time (t) on response characteristics i.e., adsorption capacity (qt) has been studied at three levels by using L9 orthogonal array (OA) which further analyzed by variance analysis (ANOVA) for adsorption data and signal/noise (S/N) ratio data by using 'larger the better' characteristics. Using ANOVA, the optimum parameters are found to be m = 2 g/L, C0 = 150 mg/L, T = 313 K and t = 90 min, resulting in a maximum adsorption capacity of 64.59 mg/g. Adopting ANOVA, the percentage contribution of each process parameter in descending order of sequence is adsorbent dose 59.97% > initial phenol concentration 31.70% > contact time 4.28% > temperature 4.04%. The phenol adsorption onto SBAC was best fitted with the pseudo-second-order kinetic model and follows the Radke-Prausnitz isotherm model. Thermodynamic parameters suggested a spontaneous, exothermic nature and the adsorption process approaches physisorption followed by chemisorption. Hence the application of Taguchi orthogonal array design is a cost-effective and time-efficient approach for carrying out experiments and optimizing procedures for adsorption of phenol and improve the adsorption capacity of SBAC.

2.
Discov Nano ; 18(1): 109, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37665422

RESUMEN

Although porphyry systems like metallo-phthalocynine are recognized as promising molecular models for electrocatalytic oxygen reduction reaction (ORR), their poor durability and methanol tolerance are still challenges and need improvement before being considered for practical applications. Herein, we successfully designed and constructed a Fe-phthalocyanine-derived highly conjugated 2D covalent organic framework (2D FePc-COF), using octa-amino-Fe-phthalocyanine (OA-FePc) and cyclohexanone as precursors. The prepared 2D FePc-COF was characterized via multiple analytic techniques. The electrochemical studies indicated that prepared 2D FePc-COF was far more superior to OA-FePc and 20% Pt/C, displaying anodic shift of 100 and 50 mV (vs RHE) in formal potential, respectively. Moreover, this catalyst also demonstrated excellent methanol tolerance and durability (over 10,000 CV cycles). Theoretical investigations revealed that due to extended conjugation and elimination of electron donating groups (-NH2), the shifting of dz2-orbital (Fe) energy took nearer to π*-orbital (O2), allowing optimum coupling of both the orbitals, thereby enhancing 4e- ORR. This work demonstrates the art of molecular design, aiming at improving catalytic activity of macrocyclic molecular systems towards ORR.

3.
Dalton Trans ; 52(33): 11481-11488, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37534542

RESUMEN

The successful deployment of sodium-ion batteries (SIBs) requires high-performance sustainable and cost-effective anode materials having a high current density. In this regard, sodium disulphide (NiS2) has been prepared as a composite with activated carbon (C) using a facile hydrothermal synthesis route in the past. The X-ray diffraction pattern of the as-prepared NiS2/C composite material shows well-defined diffraction peaks of NiS2. Most carbonaceous materials are amorphous, and the Brunauer-Emmett-Teller (BET) study shows that the surface area is close to 148 m2 g-1. At a current density of 50 mA g-1, the NiS2/C composite exhibits a high capacity of 480 mA h g-1 during the initial cycle, which subsequently decreases to 333 mA h g-1 after the completion of the 100th cycle. The NiS2/C composite electrode provides an exceptional rate capability by delivering a capacity of 270 mA h g-1 at a high current density of 2000 mA g-1, suggesting the suitability of the NiS2/C composite for SIBs. Ex situ X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses at the Ni K-edge have been used to examine the type of chemical bonding present in the anode and also how it changes during electrochemical redox cycling. The understanding of the sodium storage mechanism is improved by the favorable results, which also offer insights for developing high-performance electrode materials for rechargeable SIBs.

4.
Environ Res ; 237(Pt 2): 116990, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37640096

RESUMEN

Addressing the global challenge of persistent waste through an eco-conscious strategy to transform it into valuable and versatile materials holds great significance in today's swiftly evolving world. By adopting a sustainable approach, we can repurpose waste syringes composed of polytetrafluoroethylene (PTFE) into fluorescent carbon dots (CDs) using a simple hydrothermal process. This research harnessed hyaluronic acid to carbonize and modify discarded plastic syringes, resulting in the creation of luminescent syringe carbon dots (SCDs). Rigorous analysis employing diverse techniques delved into their optical attributes, size distribution, and surface characteristics. Extensive biocompatibility assessments using established assay methods confirmed the safety of the derived SCDs, unveiling their potential antibacterial and antifungal traits. Additionally, a confocal microscope was employed to evaluate the cellular imaging capabilities of SCDs on HeLa cells. Notably, at bactericidal concentrations, SCDs exhibited mild cytotoxicity towards mammalian cells, showcasing cell viability surpassing 91.07% at 1 mg/mL. This pioneering exploration paves the way for potential applications of SCD-based nano-bactericides across various biomedical domains. The initial outcomes established herein mark a significant stride towards the creation of cost-effective and ecologically sound fluorescent probes for biomedical imaging, aimed at combating microbial infections. By ingeniously reutilizing polyethylene terephthalate (PET), this investigation offers a sustainable remedy to address the ecological predicaments linked with plastic waste. In doing so, it charts a course towards contributing to the development of affordable, eco-friendly solutions, heralding a promising prospect for a cleaner, healthier environment.

5.
Chemosphere ; 338: 139584, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37478987

RESUMEN

In this study, the naturally available Ziziphus Mauritiana was used as a bioresource for the preparation of bifunctional nitrogen doped carbon dots (N-CDs). The doping of nitrogen into the graphitic carbon skeleton and the in-situ formation of N-CDs were systematically identified by the various structural and morphological studies. The green fluorescent N-CDs were used as active catalysts for the removal of Safranin-O dye and achieved 79 % removal efficiency. Furthermore, the prepared N-CDs were used to evaluate antibacterial activity with four different bacterial species, such as Shigella flexneri, Staphylococcus aureus, Streptococcus pyogenes, and Klebsiella pneumoniae. Amongst these, the highest antimicrobial activity was achieved against Klebsiella pneumonia, with a maximum zone of inhibition of 14.6 ± 1.12 at a concentration of 100 g mL-1. Thus, the obtained results demonstrate the cost efficient bifunctional application prospects of N-CDs to achieve significant catalytic and antibacterial activities.


Asunto(s)
Grafito , Puntos Cuánticos , Ziziphus , Carbono/química , Nitrógeno/química , Catálisis , Puntos Cuánticos/química , Colorantes Fluorescentes/química
6.
Chemosphere ; 338: 139432, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37419154

RESUMEN

In this research, novel Bi2WO6/MWCNT nanohybrids were synthesized via a cost-effective hydrothermal route. The photocatalytic performance of these specimens was tested through the photodegradation of Ciprofloxacin (CIP) under simulated sunlight. Various physicochemical techniques systematically characterized the prepared pure, Bi2WO6/MWCNT nanohybrid photocatalysts. The XRD and Raman spectra revealed the structural/phase properties of Bi2WO6/MWCNT nanohybrids. FESEM and TEM pictures revealed the attachment and distribution of plate-like Bi2WO6 nanoparticles along the nanotubes. The optical absorption and bandgap energy of Bi2WO6 was affected by the addition of MWCNT, which was analyzed by UV-DRS spectroscopy. The introduction of MWCNT reduces the bandgap value of Bi2WO6 from 2.76 to 2.46 eV. The BWM-10 nanohybrid showed superior photocatalytic activity for CIP photodegradation; 91.3% of CIP was degraded under sunlight irradiation. The PL and transient photocurrent test confirm that photoinduced charge separation efficiency is better in BWM-10 nanohybrids. The scavenger test indicates that h+ & •O2 have mainly contributed to the CIP degradation process. Furthermore, the BWM-10 catalyst demonstrated outstanding reusability and firmness in four successive cycles. It is anticipated that the Bi2WO6/MWCNT nanohybrids will be employed as photocatalysts for environmental remediation and energy conversion. This research presents a novel technique for developing an effective photocatalyst for pollutant degradation.


Asunto(s)
Antibacterianos , Ciprofloxacina , Procesos Fotoquímicos , Luz Solar , Ciprofloxacina/química , Fotólisis , Nanoestructuras/química , Espectrometría Raman , Contaminantes Ambientales/química , Antibacterianos/química
8.
Discov Nano ; 18(1): 84, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37382784

RESUMEN

Bacterial transmission is considered one of the potential risks for communicable diseases, requiring promising antibiotics. Traditional drugs possess a limited spectrum of effectiveness, and their frequent administration reduces effectiveness and develops resistivity. In such a situation, we are left with the option of developing novel antibiotics with higher efficiency. In this regard, nanoparticles (NPs) may play a pivotal role in managing such medical situations due to their distinct physiochemical characteristics and impressive biocompatibility. Metallic NPs are found to possess extraordinary antibacterial effects that are useful in vitro as well as in vivo as self-modified therapeutic agents. Due to their wide range of antibacterial efficacy, they have potential therapeutic applications via diverse antibacterial routes. NPs not only restrict the development of bacterial resistance, but they also broaden the scope of antibacterial action without binding the bacterial cell directly to a particular receptor with promising effectiveness against both Gram-positive and Gram-negative microbes. This review aimed at exploring the most relevant types of metal NPs employed as antimicrobial agents, particularly those based on Mn, Fe, Co, Cu, and Zn metals, and their antimicrobial mechanisms. Further, the challenges and future prospects of NPs in biological applications are also discussed.

9.
RSC Adv ; 13(17): 11393-11405, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37063709

RESUMEN

In the current body of research, a very quick and effectual procedure for the synthesis of pyrido[2,3-d:6,5-d']dipyrimidines has been developed. This method is accomplished through the one-pot multi-component reaction of 2-thiobarbituric acid, NH4OAc and aldehydes utilizing Ni-TMEDA@ßSiO2@αSiO2@Fe3O4 as a novel mesoporous nanomagnetic catalyst at room temperature. This protocol is one of the few reports of the preparation of these derivatives without the use of conventional heating as well as energies such as microwave and ultrasound radiation. The characterization of the prepared catalyst was well accomplished by different techniques such as FT-IR, ICP-OES, SEM, TEM, BET, XRD, VSM, TGA, EDX and Elemental mapping. This organometallic catalyst was reusable for seven times with negligible decrement in its catalytic performance. In addition, all of the products were produced with high TON and TOF values, which demonstrates that our catalyst has a very high level of activity in the preparation of pyrido[2,3-d:6,5-d']dipyrimidines.

10.
Chemosphere ; 323: 138233, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36863626

RESUMEN

The diverse nature of polymers with attractive properties has replaced the conventional materials with polymeric composites. The present study was sought to evaluate the wear performance of thermoplastic-based composites under the conditions of different loads and sliding speeds. In the present study, nine different composites were developed by using low-density polyethylene (LDPE), high-density polyethylene (HDPE) and polyethylene terephthalate (PET) with partial sand replacements i.e., 0, 30, 40, and 50 wt%. The abrasive wear was evaluated as per the ASTM G65 standard test for abrasive wear through a dry-sand rubber wheel apparatus under the applied loads of 34.335, 56.898, 68.719, 79.461 and 90.742 (N) and sliding speeds of 0.5388, 0.7184, 0.8980, 1.0776 and 1.4369 (m/s). The optimum density and compressive strength were obtained to be 2.0555 g/cm3 and 46.20 N/mm2, respectively for the composites HDPE60 and HDPE50 respectively. The minimum value of abrasive wear were found to 0.02498, 0.03430, 0.03095, 0.09020 and 0.03267 (cm3) under the considered loads of 34.335, 56.898, 68.719, 79.461 and 90.742 (N), respectively. Moreover, the composites LDPE50, LDPE100, LDPE100, LDPE50PET20 and LDPE60 showed a minimum abrasive wear of 0.03267, 0.05949, 0.05949, 0.03095 and 0.10292 at the sliding speeds of 0.5388, 0.7184, 0.8980, 1.0776 and 1.4369 (m/s), respectively. The wear response varied non-linearly with the conditions of loads and sliding speeds. Micro-cutting, plastic deformations, fiber peelings, etc. were included as the possible wear mechanism. The possible correlations between wear and mechanical properties, and throughout discussions for wear behaviors through the morphological analyses of the worn-out surfaces were provided.


Asunto(s)
Plásticos , Arena , Dióxido de Silicio , Ensayo de Materiales , Polímeros , Polietileno
11.
Chemosphere ; 330: 138452, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36965529

RESUMEN

Combustion of palm oil decanter cake (PODC) is a propitious alternative waste to energy means. However, the mono-combustion of PODC prompt severe ash slagging behavior which give rise to reduction in heat transfer and also shorten the lifespan of combustion reactors. In this study, alum sludge (AS) was introduced at different proportion of 30%, 50% and 70% to revamp the slagging characteristics of PODC during combustion. The addition of AS improved ash fusion temperature of PODC during co-combustion as ash fusion temperature increased significantly under high AS dosage. Slagging and fouling indices showed that at 50% AS addition, slagging tendency of the co-combustion ashes can be ignored. The predictive model for PODC-AS combustion showed good correlation coefficient with 0.89. Overall, co-combustion of PODC and AS is an ideal ash related problem-solving route. The proposed PODC slagging preventive method by AS was based on: (1) limited amount of aluminum content in PODC-AS system resulted in development of refractory ash (2) reduction in proportion of basic oxide which act as ash bonding glue played important role in the regulation of slagging (3) reduction of cohesive bond by formation of spongy and porous structure which prevented ash slagging.


Asunto(s)
Calor , Aguas del Alcantarillado , Aceite de Palma , Temperatura , Ceniza del Carbón , Incineración
12.
Dalton Trans ; 52(9): 2735-2748, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36749193

RESUMEN

We present the combustion-based synthesis of BiFeO3 (BFO) and Gd:BiFeO3 perovskite nanoparticles. XRD analysis demonstrates that the undoped BFO (x = 0) perovskite sample shows a single perovskite phase with a rhombohedral structure. However, increase in the Gd3+ content from x = 0.05 and 0.15 to 0.25 led to the occurrence of a structural phase transformation from rhombohedral (BiFeO3) to orthorhombic (Bi2Fe4O9). With an increase in the Gd-dopant the average crystallite size of rhombohedral structures increased from 16 to 23 nm. The perovskite samples were examined using XPS, which confirmed the presence of Bi3+, Gd3+, Fe2+, and O2+ ions. FT-IR spectroscopy indicated the existence of elemental functional groups in the synthesized perovskite nanoparticles. Furthermore, the direct band gap measured by DRS reduced from 2.16 to 2.0 eV as the Gd concentration increased. The nanoparticles of the BFO perovskite had an uneven shape, a tendency to agglomerate, and fused grains with defined grain boundaries. At ambient temperature, both the undoped and Gd:BFO perovskite nanoparticles exhibit a ferromagnetic characteristic. It was found that the BET surface area of the undoped and Gd-doped BFO perovskite nanoparticles varied progressively from 4.38 to 33.52 m2 g-1. The catalytic oxidation studies conducted in a batch reactor under air conditions revealed that the synthesized catalysts, in particular, Gd:BFO (x = 0.25), exhibited higher conversion and selectivity efficiencies for glycerol (con. 100% and sel. 99.5%, respectively).

13.
J Colloid Interface Sci ; 633: 886-896, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36495810

RESUMEN

Potassium-ion batteries (KIBs) are promising energy storage devices owing to their low cost, environmental-friendly, and excellent K+ diffusion properties as a consequence of the small Stoke's radius. The evaluation of cathode materials for KIBs, which are perhaps the most favorable substitutes to lithium-ion batteries, is of exceptional importance. Manganese dioxide (α-MnO2) is distinguished by its tunnel structures and plenty of electroactive sites, which can host cations without causing fundamental structural breakdown. As a result of the satisfactory redox kinetics and diffusion pathways of K+ in the structure, α-MnO2 nanorods cathode prepared through hydrothermal method, reversibly stores K+ at a fast rate with a high capacity and stability. It has a first discharge capacity of 142 mAh/g at C/20, excellent rate execution up to 5C, and a long cycling performance with a demonstration of moderate capacity retention up to 100 cycles. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) simulations confirm that the K+ intercalation/deintercalation occurs through 0.46 K movement between MnIV/MnIII redox pairs. First-principles density functional theory (DFT) calculations predict a diffusion barrier of 0.31 eV for K+ through the 1D tunnel of α-MnO2 electrode, which is low enough to promote faster electrochemical kinetics. The nanorod structure of α-MnO2 facilitates electron conductive connection and provides a strong electrode-electrolyte interface for the cathode, resulting in a very consistent and prevalent execution cathode material for KIBs.

14.
Environ Pollut ; 308: 119597, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35709915

RESUMEN

In the present study, we have successfully formulated a dual heterojunction of g-C3N4/BiOCl@MXene-Ti3C2 (GCBM) which was found to be highly active in the visible region. GCBM was found to be highly efficient for the degradation of an antibiotic, tetracycline (TC) as compared to the individual constituting units; g-C3N4 and BiOCl. Maximum of 97% TC degradation rate was obtained within 90 min of visible light irradiation for initial concentration of 10 mg/L of TC. Optical analysis exhibited that the synthesized heterojunction showed high absorption in the complete spectrum. The reactive species specified by the scavenger study showed the major involvement of •O2- and •OH radicals. The charge transfer mechanism showed that 2 schemes were majorly involvement in which Z-scheme was formed between g-C3N4 and BiOCl and Schottky junction was formed between g-C3N4 and Mxene-Ti3C2. The formation of Schottky junction helped in inhibiting the back transfer of photogenerated charges and thus, helped in reducing the recombination rate. The synthesized photocatalyst was found to be highly reusable and was studied for consecutive 5 cycles that generalized the high proficiency even after repetitive cycles.


Asunto(s)
Tetraciclina , Titanio , Antibacterianos , Catálisis , Luz
15.
Nanomaterials (Basel) ; 11(5)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34065856

RESUMEN

Recently, the oxidative behavior of methotrexate (MTX) anticancer drug is highly demanded, due to its side effects on healthy cells, despite being a very challenging task. In this study, we have prepared porous NiO material using sodium sulfate as an electronic disorder reagent by hydrothermal method and found it highly sensitive and selective for the oxidation of MTX. The synthesized NiO nanostructures were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD) techniques. These physical characterizations delineated the porous morphology and cubic crystalline phase of NiO. Different electrochemical approaches have been utilized to determine the MTX concentrations in 0.04 M Britton-Robinson buffer (BRB) at pH 2 using glassy carbon electrode (GCE)-modified with electronically disordered NiO nanostructures. The linear range for MTX using cyclic voltammetry (CV) was found to be from 5 to 30 nM, and the limit of detection (LOD) and limit of quantification (LOQ) were 1.46 nM and 4.86 nM, respectively, whereas the linear range obtained via linear sweep voltammetry (LSV) was estimated as 15-90 nM with LOD and LOQ of 0.819 nM and 2.713 nM, respectively. Additionally, amperometric studies revealed a linear range from 10 to70 nM with LOD and LOQ of 0.1 nM and 1.3 nM, respectively. Importantly, MTX was successfully monitored in pharmaceutical products using the standard recovery method. Thus, the proposed approach for the synthesis of active metal oxide materials could be sued for the determination of other anticancer drugs in real samples and other biomedical applications.

16.
Polymers (Basel) ; 13(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066430

RESUMEN

Synergistic formulations were developed with nano-pigments, and their effects on the mechanical properties on steel substrates and structures were evaluated. This paper provides a complete analysis of the epoxy coating, focusing on the incorporation of nano-pigments and their synergistic effects in obtaining higher mechanical properties. This study reports the preparation of epoxy nano-silica composites, their characterization, and the development of coatings based on nano-silica and ZnO particles. In this composite, epoxy resin was incorporated with SiO2 as the main pigment and ZnO as a synergistic pigment to achieve high-performance epoxy coatings for multiple applications. The mechanical properties of these coatings (ESZ1-ESZ3) were evaluated by nanoindentation, and were used to measure the enhanced durability of nanocomposite coatings developed with synergistic formulations with different types of nanoparticles. Their performance was evaluated before and after exposure to a 3.5% NaCl solution to examine the changes of hardness and elastic modulus. The results showed that the nanoindentation technique, in conjunction with Fourier transform infrared spectroscopy and X-ray diffraction, could examine the durability and predict the service life of nanocomposite coatings. A correlation was observed between the modulus and hardness before and after exposing epoxy composite coatings (ESZ1-ESZ3) to a 3.5% NaCl solution.

17.
Dalton Trans ; 50(6): 2032-2041, 2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33480909

RESUMEN

Tungsten oxide (WO3) as an efficient heterogeneous catalyst was prepared via a simple hydrothermal route for the synthesis of a wide range of bioactive heterocyclic compounds. The present investigation deals with the rapid and low-cost synthesis of C-3-alkylated 4-hydroxycoumarin, chromene, and xanthene derivatives. WO3 nanorods (NRs) are successfully envisaged to catalyze desired transformations, demonstrating the wide range of their potential applications in catalysis. Synthetic transformation details, smallest catalytic amounts, excellent product yields, and plausible reaction mechanisms for the formation of these heterocyclic scaffolds are elicidated. As-prepared WO3 NRs are characterized to confirm their structural, chemical, and morphological parameters by X-ray diffraction, X-ray photoelectron spectroscopy, and field emission scanning electron microscopy measurements, respectively. We discuss the factors that govern the formation of products, and the active role of WO3 NRs, which are essential for the activation of substrates in the present study of thermal conditions. Herein, detailed synthesis and spectroscopic information of the prepared compounds are reported.


Asunto(s)
Compuestos Heterocíclicos/química , Nanotubos/química , Óxidos/química , Tungsteno/química , Catálisis , Tecnología Química Verde , Porosidad , Propiedades de Superficie
18.
Polymers (Basel) ; 12(12)2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33316959

RESUMEN

In the present study, a polymeric nanocomposite, CoFe2O4@DHBF, was fabricated using 2,4 dihydroxybenzaldehyde and formaldehyde in basic medium with CoFe2O4 nanoparticles. The fabricated nanocomposite was characterized using FTIR, TGA, XRD, SEM, TEM, and XPS analyses. The analytical results revealed that the magnetic nanocomposite was fabricated successfully with high surface area 370.24 m2/g. The fabricated CoFe2O4@DHBF was used as an efficient adsorbent for the adsorption of U(VI) and Eu(III) ions from contaminated water. pH, initial concentration, adsorption time, and the temperature of the contaminated water solution affecting the adsorption ability of the nanocomposites were studied. The batch adsorption results exposed that the adsorption capacity for the removal of U(VI) and Eu(III) was found to be 237.5 and 225.5 mg/g. The adsorption kinetics support that both the metal ions follow second order adsorption kinetics. The adsorption isotherm well fits with the Langmuir adsorption isotherm and the correlation coefficient (R2) values were found to be 0.9920 and 0.9913 for the adsorption of U(VI) and Eu(III), respectively. It was noticed that the fabricated nanocomposites show excellent regeneration ability and about 220.1 and 211.3 mg/g adsorption capacity remains with U(VI) and Eu(III) under optimum conditions.

19.
Nanomaterials (Basel) ; 10(12)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255576

RESUMEN

We report on the electromagnetic properties of Co2+ substituted spinel MgCuZn ferrites developed via a facile molten salt synthesis (MSS) route. The choice of synthesis route in combination with cobalt substitution led to strong electromagnetic properties such as high saturation magnetization (i.e., 63 emu/g), high coercivity (17.86 gauss), and high initial permeability (2730), which are beneficial for the multilayer chip inductor (MLCI) application. In a typical process, the planned ferrites were synthesized at 800 °C using sodium chloride as a growth inhibitor, with dense morphology and irregularity in the monolithicity of the grains. The compositional analysis of as-prepared ferrite confirms the presence of desired elements with their proportion. The crystallite size (using X-ray diffraction (XRD) analysis) for different samples varies in the range of 49-51 nm. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis showcases the compact morphology of the developed samples, which is typical in the ferrite system. The dielectric properties (dielectric-loss and dielectric-constant) in the frequency range of 100Hz-1MHz suggest normal dielectric distribution according to interfacial polarization from Maxwell-Wagner. From the developed ferrites, upon comparison with a low dielectric loss with high permeability value, Mg-Cu-Zn ferrite with Co = 0.05 substitution proved to be a stronger material for MLCIs with high-performance applications.

20.
RSC Adv ; 10(25): 14826-14836, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35497129

RESUMEN

The crystal architecture of TiO2 was successfully tailored via a low-temperature (≤200 °C) hydrothermal process in the presence of d-mannitol for feasible applications in dye-sensitized solar cells (DSSCs) and heterogeneous catalysis. In the development of anatase-TiO2 (A-TiO2), d-mannitol does not merely acts as a complexing agent to manage the zigzag chains of octahedral TiO6 2- with dominant edge sharing but also performs as a capping agent by influencing the hydrolysis process during nucleation, as confirmed by Fourier-transform infrared spectroscopy and dynamic light scattering studies. After physical measurements, the as-synthesized nanocrystallites (NCs) of A-TiO2 were used in DSSCs, where a fascinating power conversion efficiency (PCE) of 6.0% was obtained, which showed excellent performance compared with commercial anatase-TiO2 (CA-TiO2: 5.7%) and rutile-TiO2 (R-TiO2) obtained without d-mannitol (3.7%). Moreover, a smart approach was developed via the A-TiO2 catalyst to synthesize pharmaceutically important C-3 alkylated 4-hydroxycoumarins through different activated secondary alcohols under solvent-free, and heat/visible light conditions. In addition, the catalytic activity of the so-produced A-TiO2 catalyst under solvent-free conditions exhibited remarkable recyclability with up to five consecutive runs with negligible reduction, which is superior to existing reports, and clearly reveals the novelty, and green, sustainable nature of the as-synthesized A-TiO2 catalyst. A plausible reaction mechanism of both coupling partners was activated through the interaction with the A-TiO2 catalyst to produce valuable C-3 alkylated 4-hydroxycoumarins with 95% yield and high selectivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...