Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Med Image Anal ; 10(4): 632-41, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16723270

RESUMEN

Many cardiac pathologies are reflected in abnormal myocardial deformation, accessible through magnetic resonance tagging (MRT). Interpretation of the MRT data is difficult, since the relation between pathology and deformation is not straightforward. Mathematical models of cardiac mechanics could be used to translate measured abnormalities into the underlying pathology, but, so far, they even fail to correctly simulate myocardial deformation in the healthy heart. In this study we investigated to what extent (1) our previously published three-dimensional finite element model of cardiac mechanics [Kerckhoffs, R.C.P., Bovendeerd, P.H.M., Kotte, J.C.S., Prinzen, F.W., Smits, K., Arts, T., 2003. Homogeneity of cardiac contraction despite physiological asynchrony of depolarization: a model study. Ann. Biomed. Eng. 31, 536-547] can simulate measured cardiac deformation, and (2) discrepancies between strains in model and experiment are related to the choice of the myofiber orientation in the model. To this end, we measured midwall circumferential strain E(cc) and circumferential-radial shear strain E(cr) in three healthy subjects using MRT. E(cc) as computed in the model agreed well with measured E(cc). Computed E(cr) differed significantly from measured E(cr). The time course of E(cr) was found to be very sensitive to the choice of the myofiber orientation, in particular to the choice of the transverse angle. Discrepancies between circumferential-radial shear strain in model and experiment were reduced strongly by increasing the transverse angle in the original model by 25%.


Asunto(s)
Ventrículos Cardíacos/citología , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Modelos Cardiovasculares , Fibras Musculares Esqueléticas/citología , Función Ventricular , Adulto , Anisotropía , Simulación por Computador , Elasticidad , Análisis de Elementos Finitos , Humanos , Resistencia al Corte , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA