Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(18): e2308543, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447187

RESUMEN

Transverse thermoelectric generation converts temperature gradient in one direction into an electric field perpendicular to that direction and is expected to be a promising alternative in creating simple-structured thermoelectric modules that can avoid the challenging problems facing traditional Seebeck-effect-based modules. Recently, large transverse thermopower has been observed in closed circuits consisting of magnetic and thermoelectric materials, called the Seebeck-driven transverse magneto-thermoelectric generation (STTG). However, the closed-circuit structure complicates its broad applications. Here, STTG is realized in the simplest way to combine magnetic and thermoelectric materials, namely, by stacking a magnetic layer and a thermoelectric layer together to form a bilayer. The transverse thermopower is predicted to vary with changing layer thicknesses and peaks at a much larger value under an optimal thickness ratio. This behavior is verified in the experiment, through a series of samples prepared by depositing Fe-Ga alloy thin films of various thicknesses onto n-type Si substrates. The measured transverse thermopower reaches 15.2 ± 0.4 µV K-1, which is a fivefold increase from that of Fe-Ga alloy and much larger than the current room temperature record observed in Weyl semimetal Co2MnGa. The findings highlight the potential of combining magnetic and thermoelectric materials for transverse thermoelectric applications.

2.
Nat Commun ; 15(1): 2184, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538575

RESUMEN

Functional materials such as magnetic, thermoelectric, and battery materials have been revolutionized through nanostructure engineering. However, spin caloritronics, an advancing field based on spintronics and thermoelectrics with fundamental physics studies, has focused only on uniform materials without complex microstructures. Here, we show how nanostructure engineering enables transforming simple magnetic alloys into spin-caloritronic materials displaying significantly large transverse thermoelectric conversion properties. The anomalous Nernst effect, a promising transverse thermoelectric phenomenon for energy harvesting and heat sensing, has been challenging to utilize due to the scarcity of materials with large anomalous Nernst coefficients. We demonstrate a remarkable ~ 70% improvement in the anomalous Nernst coefficients (reaching ~ 3.7 µVK-1) and a significant ~ 200% enhancement in the power factor (reaching ~ 7.7 µWm-1K-2) in flexible Fe-based amorphous materials by nanostructure engineering without changing their composition. This surpasses all reported amorphous alloys and is comparable to single crystals showing large anomalous Nernst effect. The enhancement is attributed to Cu nano-clustering, facilitating efficient transverse thermoelectric conversion. This discovery advances the materials science of spin caloritronics, opening new avenues for designing high-performance transverse thermoelectric devices for practical applications.

3.
Phys Rev Lett ; 131(20): 206701, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38039463

RESUMEN

We report the observation of the anisotropic magneto-Thomson effect (AMTE), which is one of the higher-order thermoelectric effects in a ferromagnet. Using lock-in thermography, we demonstrated that in a ferromagnetic NiPt alloy, the cooling or heating induced by the Thomson effect depends on the angle between the magnetization direction and the temperature gradient or charge current applied to the alloy. AMTE observed here is the missing ferromagnetic analog of the magneto-Thomson effect in a nonmagnetic conductor, providing the basis for nonlinear spin caloritronics and thermoelectrics.

4.
Sci Adv ; 9(5): eadd7194, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36724270

RESUMEN

This article shows experimentally that an external electric field affects the velocity of the longitudinal acoustic phonons (vLA), thermal conductivity (κ), and diffusivity (D) in a bulk lead zirconium titanate-based ferroelectric. Phonon conduction dominates κ, and the observations are due to changes in the phonon dispersion, not in the phonon scattering. This gives insight into the nature of the thermal fluctuations in ferroelectrics, namely, phonons labeled ferrons that carry heat and polarization. It also opens the way for phonon-based electrically driven all-solid-state heat switches, an enabling technology for solid-state heat engines. A quantitative theoretical model combining piezoelectric strain and phonon anharmonicity explains the field dependence of vLA, κ, and D without any adjustable parameters, thus connecting thermodynamic equilibrium properties with transport properties. The effect is four times larger than previously reported effects, which were ascribed to field-dependent scattering of phonons.

5.
Sci Technol Adv Mater ; 23(1): 767-782, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386550

RESUMEN

Transverse thermoelectric generation using magnetic materials is essential to develop active thermal engineering technologies, for which the improvements of not only the thermoelectric output but also applicability and versatility are required. In this study, using combinatorial material science and lock-in thermography technique, we have systematically investigated the transverse thermoelectric performance of Sm-Co-based alloy films. The high-throughput material investigation revealed the best Sm-Co-based alloys with the large anomalous Nernst effect (ANE) as well as the anomalous Ettingshausen effect (AEE). In addition to ANE/AEE, we discovered unique and superior material properties in these alloys: the amorphous structure, low thermal conductivity, and large in-plane coercivity and remanent magnetization. These properties make it advantageous over conventional materials to realize heat flux sensing applications based on ANE, as our Sm-Co-based films can generate thermoelectric output without an external magnetic field. Importantly, the amorphous nature enables the fabrication of these films on various substrates including flexible sheets, making the large-scale and low-cost manufacturing easier. Our demonstration will provide a pathway to develop flexible transverse thermoelectric devices for smart thermal management.

6.
Phys Rev Lett ; 128(4): 047601, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35148138

RESUMEN

We formulate a scattering theory of polarization and heat transport through a ballistic ferroelectric point contact. We predict a polarization current under either an electric field or a temperature difference that depends strongly on the direction of the ferroelectric order and can be detected by its magnetic stray field and associated thermovoltage and Peltier effect.

7.
Nat Mater ; 21(2): 136-137, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35110741

Asunto(s)
Anisotropía
8.
Sci Technol Adv Mater ; 22(1): 441-448, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248419

RESUMEN

For any thermoelectric effects to be achieved, a thermoelectric material must have hot and cold sides. Typically, the hot side can be easily obtained by excess heat. However, the passive cooling method is often limited to convective heat transfer to the surroundings. Since thermoelectric voltage is proportional to the temperature difference between the hot and cold sides, efficient passive cooling to increase the temperature gradient is of critical importance. Here, we report simultaneous harvesting of radiative cooling at the top and solar heating at the bottom to enhance the temperature gradient for a transverse thermoelectric effect which generates thermoelectric voltage perpendicular to the temperature gradient. We demonstrate this concept by using the spin Seebeck effect and confirm that the spin Seebeck device shows the highest thermoelectric voltage when both radiative cooling and solar heating are utilized. Furthermore, the device generates thermoelectric voltage even at night through radiative cooling which enables continuous energy harvesting throughout a day. Planar geometry and scalable fabrication process are advantageous for energy harvesting applications.

9.
Sci Rep ; 11(1): 11228, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34045651

RESUMEN

The introduction of spin caloritronics into thermoelectric conversion has paved a new path for versatile energy harvesting and heat sensing technologies. In particular, thermoelectric generation based on the anomalous Nernst effect (ANE) is an appealing approach as it shows considerable potential to realize efficient, large-area, and flexible use of heat energy. To make ANE applications viable, not only the improvement of thermoelectric performance but also the simplification of device structures is essential. Here, we demonstrate the construction of an anomalous Nernst thermopile with a substantially enhanced thermoelectric output and simple structure comprising a single ferromagnetic material. These improvements are achieved by combining the ANE with the magneto-optical recording technique called all-optical helicity-dependent switching of magnetization. Our thermopile consists only of Co/Pt multilayer wires arranged in a zigzag configuration, which simplifies microfabrication processes. When the out-of-plane magnetization of the neighboring wires is reversed alternately by local illumination with circularly polarized light, the ANE-induced voltage in the thermopile shows an order of magnitude enhancement, confirming the concept of a magneto-optically designed anomalous Nernst thermopile. The sign of the enhanced ANE-induced voltage can be controlled reversibly by changing the light polarization. The engineering concept demonstrated here promotes effective utilization of the characteristics of the ANE and will contribute to realizing its thermoelectric applications.

10.
Phys Rev Lett ; 126(18): 187603, 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34018785

RESUMEN

The spontaneous order of electric and magnetic dipoles in ferroelectrics and ferromagnets even at high temperatures is both fascinating and useful. Transport of magnetism in the form of spin currents is vigorously studied in spintronics, but the polarization current of the ferroelectric order has escaped attention. We therefore present a time-dependent diffusion theory for heat and polarization transport in a planar ferroelectric capacitor with parameters derived from a one-dimensional phonon model. We predict steady-state Seebeck and transient Peltier effects that await experimental discovery.

11.
Artículo en Inglés | MEDLINE | ID: mdl-33563879

RESUMEN

The interconversion between spin, charge, and heat currents is being actively studied from the viewpoints of both fundamental physics and thermoelectric applications in the field of spin caloritronics. This field is a branch of spintronics, which has developed rapidly since the discovery of the thermo-spin conversion phenomenon called the spin Seebeck effect. In spin caloritronics, various thermo-spin conversion phenomena and principles have subsequently been discovered and magneto-thermoelectric effects, thermoelectric effects unique to magnetic materials, have received renewed attention with the advances in physical understanding and thermal/thermoelectric measurement techniques. However, the existence of various thermo-spin and magneto-thermoelectric conversion phenomena with similar names may confuse non-specialists. Thus, in this Review, the basic behaviors, spin-charge-heat current conversion symmetries, and functionalities of spin-caloritronic phenomena are summarized, which will help new entrants to learn fundamental physics, materials science, and application studies in spin caloritronics.


Asunto(s)
Calor , Electricidad , Fenómenos Magnéticos
12.
Nat Mater ; 20(4): 463-467, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33462463

RESUMEN

When a temperature gradient is applied to a closed circuit comprising two different conductors, a charge current is generated via the Seebeck effect1. Here, we utilize the Seebeck-effect-induced charge current to drive 'transverse' thermoelectric generation, which has great potential for energy harvesting and heat sensing applications owing to the orthogonal geometry of the heat-to-charge-current conversion2-9. We found that, in a closed circuit comprising thermoelectric and magnetic materials, artificial hybridization of the Seebeck effect into the anomalous Hall effect10 enables transverse thermoelectric generation with a similar symmetry to the anomalous Nernst effect11-27. Surprisingly, the Seebeck-effect-driven transverse thermopower can be several orders of magnitude larger than the anomalous-Nernst-effect-driven thermopower, which is clearly demonstrated by our experiments using Co2MnGa/Si hybrid materials. The unconventional approach could be a breakthrough in developing applications of transverse thermoelectric generation.

13.
Phys Rev Lett ; 125(10): 106601, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32955334

RESUMEN

We report the observation of the higher-order thermoelectric conversion based on a magneto-Thomson effect. By means of thermoelectric imaging techniques, we directly observed the temperature change induced by the Thomson effect in a polycrystalline Bi_{88}Sb_{12} alloy under a magnetic field and found that the magnetically enhanced Thomson coefficient can be comparable to or even larger than the Seebeck coefficient. Our experiments reveal the significant contribution of the higher-order magnetothermoelectric conversion, opening the door to "nonlinear spin caloritronics."

14.
Nat Commun ; 11(1): 2, 2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31911599

RESUMEN

Active control of heat flow is crucial for the thermal management of increasingly complex electronic and spintronic devices. In addition to conventional heat transport engineering, spin caloritronics has received extensive attention as a heat control principle owing to its high controllability and unique thermal energy conversion symmetry. Here we demonstrate that the direction of heat currents generated by spin-caloritronic phenomena can be changed simply by illuminating magnetic materials with visible light. The optical control of heat currents is realized through a combination of the spin-driven thermoelectric conversion called an anomalous Ettingshausen effect and all-optical helicity-dependent switching of magnetization. This approach enables not only pinpoint manipulation and flexible design of the heat current distribution by patterning the illuminating light but also on/off control of the resulting temperature modulation by tuning the light polarization. These versatile heat control functionalities will open up a pathway for nanoscale thermal energy engineering.

15.
Sci Rep ; 9(1): 18443, 2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31804550

RESUMEN

The magnetic skyrmion is a nanoscale topological object characterized by the winding of magnetic moments, appearing in magnetic materials with broken inversion symmetry. Because of its low current threshold for driving the skyrmion motion, they have been intensely studied toward novel storage applications by using electron-beam, X-ray, and visible light microscopies. Here, we demonstrate another imaging method for skyrmions by using spin-caloritronic phenomena, that is, the spin Seebeck and anomalous Nernst effects, as a probe of magnetic texture. We scanned a focused heating spot on a Hall-cross shaped MgO/CoFeB/Ta/W multilayer film and mapped the magnitude as well as the direction of the resultant thermoelectric current due to the spin-caloritronic phenomena. Our experimental and calculation reveal that the characteristic patterns in the thermoelectric signal distribution reflect the skyrmions' magnetic texture. The thermoelectric microscopy will be a complementary and useful imaging technique for the development of skyrmion devices owing to the unique symmetry of the spin-caloritronic phenomena.

16.
Sci Rep ; 9(1): 13197, 2019 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-31519954

RESUMEN

Since the charge current plays a major role in information processing and Joule heating is inevitable in electronic devices, thermal management, i.e., designing heat flows, is required. Here, we report that strain application can change a direction of a heat current generated by magneto-thermoelectric effects. For demonstration, we used metallic magnets in a thin-film form, wherein the anomalous Ettingshausen effect mainly determines the direction of the heat flow. Strain application can alter the magnetization direction owing to the magnetoelastic effect. As a result, the heat current, which is in the direction of the cross product of the charge current and the magnetization vector, can be switched or rotated simply by applying a tensile strain to the metallic magnets. We demonstrate 180° switching and 90° rotation of the heat currents in an in-plane magnetized Ni sample on a rigid sapphire substrate and a perpendicularly magnetized TbFeCo film on a flexible substrate, respectively. An active thermography technique was used to capture the strain-induced change in the heat current direction. The method presented here provides a novel method for controlling thermal energy in electronic devices.

17.
Sci Rep ; 9(1): 2751, 2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808974

RESUMEN

Thermoelectric technologies are becoming indispensable in the quest for a sustainable future. Recently, an emerging phenomenon, the spin-driven thermoelectric effect (STE), has garnered much attention as a promising path towards low cost and versatile thermoelectric technology with easily scalable manufacturing. However, progress in development of STE devices is hindered by the lack of understanding of the fundamental physics and materials properties responsible for the effect. In such nascent scientific field, data-driven approaches relying on statistics and machine learning, instead of more traditional modeling methods, can exhibit their full potential. Here, we use machine learning modeling to establish the key physical parameters controlling STE. Guided by the models, we have carried out actual material synthesis which led to the identification of a novel STE material with a thermopower an order of magnitude larger than that of the current generation of STE devices.

18.
Sci Rep ; 8(1): 16067, 2018 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-30375471

RESUMEN

Conversion between spin and charge currents is essential in spintronics, since it enables spin-orbit-torque magnetization switching, spin-current-driven thermoelectric generation, and nano-scale thermal energy control. To realize efficient spin-charge conversion, a variety of mechanisms, including spin Hall effects, Rashba-Edelstein effects, and spin-momentum locking in topological insulators, have been investigated and more comprehensive material exploration is necessary. Here we demonstrate high-throughput screening of spin-charge conversion materials by means of the spin Peltier effect (SPE). This is enabled by combining recently-developed SPE-imaging techniques with combinatorial materials science; using a composition-spread alloy film formed on a magnetic insulator, we observe the SPE-induced temperature change due to the spin Hall effect and obtain a continuous mapping of its composition dependence from the single sample. The distribution of the SPE signals reflects local spin-charge conversion capability in the alloy owing to unique heat-generation nature of the SPE. This combinatorial approach will accelerate materials research towards high-performance spintronic devices.

19.
Nature ; 560(7720): E36, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29907793

RESUMEN

In this Letter, owing to an error during the production process, 'θH' was incorrectly written as 'θΗH' six times in the paragraph starting "Up to now,…". These errors have been corrected online.

20.
Nature ; 558(7708): 95-99, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29785052

RESUMEN

The Peltier effect, discovered in 1834, converts a charge current into a heat current in a conductor, and its performance is described by the Peltier coefficient, which is defined as the ratio of the generated heat current to the applied charge current1,2. To exploit the Peltier effect for thermoelectric cooling or heating, junctions of two conductors with different Peltier coefficients have been believed to be indispensable. Here we challenge this conventional wisdom by demonstrating Peltier cooling and heating in a single material without junctions. This is realized through an anisotropic magneto-Peltier effect in which the Peltier coefficient depends on the angle between the directions of a charge current and magnetization in a ferromagnet. By using active thermography techniques3-10, we observe the temperature change induced by this effect in a plain nickel slab. We find that the thermoelectric properties of the ferromagnet can be redesigned simply by changing the configurations of the charge current and magnetization, for instance, by shaping the ferromagnet so that the current must flow around a curve. Our experimental results demonstrate the suitability of nickel for the anisotropic magneto-Peltier effect and the importance of spin-orbit interaction in its mechanism. The anisotropic magneto-Peltier effect observed here is the missing thermoelectric phenomenon in ferromagnetic materials-the Onsager reciprocal of the anisotropic magneto-Seebeck effect previously observed in ferromagnets-and its simplicity might prove useful in developing thermal management technologies for electronic and spintronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...