Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Intervalo de año de publicación
1.
Nanomedicine (Lond) ; 16(9): 741-758, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33856243

RESUMEN

Aim: The low solubility and consequent poor bioavailability of ibuprofen (IBU) is a major drawback that can be overcome by anchoring IBU on ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs) as effective multifunctional carriers for drug delivery. Methods: USPIONs were conjugated with glycerol phosphate (USPION-GP) and also co-conjugated with IBU (USPION-GP/IBU), and their in vivo toxicity and anti-inflammatory effects investigated. Phosphate buffer saline (control), IBU, USPION-GP and USPION-GP/IBU were intravenously administered 15 min before lipopolysaccharide-induced peritonitis in male Balb/c mice. Results: 4 h later, USPION bioconjugates did not appear to have caused toxicity to blood leukocytes or caused alterations in the spleen, liver or kidneys. Also, they inhibited lipopolysaccharide-induced neutrophil mobilization into the peritoneum. Conclusion: The absence of systemic toxicity and the unexpected anti-inflammatory action of USPION bioconjugates indicates that they could be a novel and effective approach to administer IBU and warrant further investigation.


Asunto(s)
Ibuprofeno , Nanopartículas Magnéticas de Óxido de Hierro , Animales , Antiinflamatorios/toxicidad , Antiinflamatorios no Esteroideos/toxicidad , Disponibilidad Biológica , Ibuprofeno/toxicidad , Masculino , Ratones , Solubilidad
2.
Nanomedicine (Lond) ; 15(25): 2475-2492, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32945229

RESUMEN

Aim: To develop a series of superparamagnetic iron oxide nanoparticles (SPIONs) by coconjugating them with ibuprofen (ibu) and glycerol phosphate (glycerol) or ibu and glucose-1-phosphate and to assess capacity of these conjugates to inhibit the release of nitric oxide (NO) in macrophages, even at low concentrations. Materials & methods: The SPION conjugates were characterized and their properties evaluated showing the influence of those ligands on colloidal stability and inhibition of NO-release demonstrated. The cytotoxicity and possible anti-inflammatory activity were evaluated using murine macrophages (RAW 247.6). Results: SPION-glycerol phosphate/ibu conjugates inhibited the NO production induced by lipopolysaccharides, indicating a potential anti-inflammatory activity. Conclusion: SPION conjugated with ibu was shown to inhibit NO-release even at very low concentrations, suggesting possible action against inflammatory diseases.


Asunto(s)
Nanopartículas Magnéticas de Óxido de Hierro , Animales , Ibuprofeno/farmacología , Lipopolisacáridos , Ratones , Óxido Nítrico , Células RAW 264.7
3.
ACS Appl Nano Mater, v. 3, n. 10, 10399-10410, set. 2020
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3377

RESUMEN

The biocompatibility, bionanointeraction, uptake efficiency, and entry pathway of luminescent nanomaterials are the key factors to understand development of an efficient bionanoprobe. The foremost objective of this work is to explore the potential of 3-mercaptopropionic acid (3-MPA) capped ZnSe:xMn2+ (x = 5, 10, and 15 mol %) quantum dots (QDs) for the development of bionanoprobe used in future biological and clinical applications. For this purpose, highly intense orange-emitting activator Mn2+ ion doped ZnSe QDs were synthesized via a high-temperature organometallic method and rendered water-soluble by a ligand exchange approach. The morphological and physicochemical characterizations displayed the ultrasmall zinc-blend cubic crystal structure of QDs with an elliptical shape nanocrystals and average diameter of 4 nm. The luminescent nanomaterials exhibited orange emission centered at 584 nm under excitation at 385 nm. The biocompatibility, time-dependent cellular uptake, and the uptake mechanism of QDs were studied in RAW 264.7 macrophages, accomplished by various cytotoxicity assays, CytoViva hyperspectral enhanced dark-field and dual-mode fluorescence (DMF) microscopy, and transmission electron microscopy (TEM) images. The cytotoxicity study did not confirm any noticeable deleterious effect of QDs within incubation for 6 h. The fluorescence images of cells incubated with QDs showed efficient emission, which is a manifestation that QDs are photochemically stable in the intracellular environment. The cellular uptake findings demonstrated that the QDs were predominantly internalized via clathrin- and caveolae-mediated pathways. After the uptake, QDs aggregates appeared inside the vesicles in the cytoplasm, and their number and size gradually increased as a function of time. Nevertheless, the fluorescent QDs presented remarkable colloidal stability in various media, biocompatibility within the designated time, efficient time-dependent uptake, and distinct entry pathway in RAW macrophages, suggesting promising candidates to explore for the development of future bionanoprobes.

4.
Int J Nanomedicine ; 12: 7153-7163, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29026308

RESUMEN

Metastatic melanoma is an aggressive cancer with increasing incidence and limited therapies in advanced stages. Systemic neutrophilia or abundant neutrophils in the tumor contribute toward its worst prognosis, and the interplay of cancer and the immune system has been shown in tumor development and metastasis. We recently showed the in vivo efficacy of poly(ε-caprolactone) lipid-core nanocapsule (LNC) or LNC loaded with acetyleugenol (AcE-LNC) to treat B16F10-induced melanoma in mice. In this study, we investigated whether LNC or AcE-LNC toxicity could involve modifications on crosstalk of melanoma cells and neutrophils. Therefore, melanoma cells (B16F10) were pretreated with vehicle, LNC, AcE or AcE-LNC for 24 h, washed and, further, cocultured for 18 h with peritoneal neutrophils obtained from C57Bl/6 mice. Melanoma cells were able to internalize the LNC or AcE-LNC after 2 h of incubation. LNC or AcE-LNC pretreatments did not cause melanoma cells death, but led melanoma cells to be more susceptible to death in serum deprivation or hypoxia or in the presence of neutrophils. Interestingly, the production of reactive oxygen species (ROS), which causes cell death, was increased by neutrophils in the presence of LNC- and AcE-LNC-pretreated melanoma cells. LNC or AcE-LNC treatments reduced the concentration of transforming growth factor-ß (TGF-ß) in the supernatant of melanoma cells, a known factor secreted by cancer cells to induce pro-tumoral actions of neutrophils in the tumor microenvironment. In addition, we found reduced levels of pro-tumoral chemical mediators VEGF, arginase-1, interleukin-10 (IL-10) and matrix metalloproteinase-9 (MMP-9) in the supernatant of LNC or AcE-LNC-pretreated melanoma cells and cocultured with neutrophils. Overall, our data show that the uptake of LNC or AcE-LNC by melanoma cells affects intracellular mechanisms leading to more susceptibility to death and also signals higher neutrophil antitumoral activity.


Asunto(s)
Eugenol/análogos & derivados , Melanoma/tratamiento farmacológico , Melanoma/patología , Nanocápsulas/química , Neutrófilos/efectos de los fármacos , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/química , Técnicas de Cocultivo , Sistemas de Liberación de Medicamentos/métodos , Eugenol/administración & dosificación , Eugenol/química , Interleucina-10/metabolismo , Lípidos/química , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Melanoma/metabolismo , Ratones Endogámicos C57BL , Nanocápsulas/administración & dosificación , Neutrófilos/metabolismo , Neutrófilos/patología , Poliésteres/química , Especies Reactivas de Oxígeno/metabolismo , Hipoxia Tumoral
5.
Anal Bioanal Chem ; 409(28): 6663-6675, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28918472

RESUMEN

Size, shape, and surface properties of superparamagnetic iron oxide nanoparticles (SPIONs) can influence their interaction with biological systems, particularly the incorporation by tumor cells and consequently the biological activity and efficiency in biomedical applications. Several strategies have been used to evaluate cellular uptake of SPIONs. While qualitative methods are generally based on microscopy techniques, quantitative assays are carried out by techniques such as inductively coupled plasma-mass spectrometry and flow cytometry. However, inexpensive colorimetric methods based on equipments commonly found in chemistry and biochemistry laboratories are preferred for routine measurements. Nevertheless, colorimetric assays must be used judiciously, particularly when nanoparticles are involved, since their interaction with biological constituents tends to lead to quite underestimated results. Thus, herein described is a colorimetric protocol using 2,2'-bipyridine as chromogenic ligand, where each step was optimized and validated by total reflection X-ray fluorescence spectroscopy, realizing a highly reproducible and reliable method for determination of iron content in cells incubated with SPIONs. The limit of blank and limit of detection were determined to be as low as 0.076 and 0.143 µg Fe/mL, using sample volumes as small as 190 µL and a number of cells as low as 2.0 × 105. Furthermore, three different types of surface-functionalized nanoparticles were incorporated in cells and evaluated through this protocol, enabling to monitor the additive effect of o-phosphorylethanolamine (PEA) and folic acid (FA) conjugation on iron oxide nanoparticles (SPION-PEA and SPION-PEA/FA), that enhanced the uptake by HeLa cells, respectively, by four and ten times when compared to SPIONs conjugated with nonbioactive molecules. Graphical abstract Colorimetric determination of superparamagnetic iron oxide nanoparticles (SPIONs) incorporated by cells.


Asunto(s)
Medios de Contraste/análisis , Etanolaminas/análisis , Ácido Fólico/análisis , Nanopartículas de Magnetita/análisis , Permeabilidad de la Membrana Celular , Supervivencia Celular , Colorimetría/métodos , Medios de Contraste/química , Medios de Contraste/farmacocinética , Etanolaminas/química , Etanolaminas/farmacocinética , Compuestos Férricos/análisis , Compuestos Férricos/química , Compuestos Férricos/farmacocinética , Ácido Fólico/análogos & derivados , Ácido Fólico/farmacocinética , Células HeLa , Humanos , Nanopartículas de Magnetita/química
6.
Int J Nanomedicine ; 11: 1261-79, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27099491

RESUMEN

Melanoma is a severe metastatic skin cancer with poor prognosis and no effective treatment. Therefore, novel therapeutic approaches using nanotechnology have been proposed to improve therapeutic effectiveness. Lipid-core nanocapsules (LNCs), prepared with poly(ε-caprolactone), capric/caprylic triglyceride, and sorbitan monostearate and stabilized by polysorbate 80, are efficient as drug delivery systems. Here, we investigated the effects of acetyleugenol-loaded LNC (AcE-LNC) on human SK-Mel-28 melanoma cells and its therapeutic efficacies on melanoma induced by B16F10 in C57B6 mice. LNC and AcE-LNC had z-average diameters and zeta potential close to 210 nm and -10.0 mV, respectively. CytoViva(®) microscopy images showed that LNC and AcE-LNC penetrated into SK-Mel-28 cells, and remained in the cytoplasm. AcE-LNC in vitro treatment (18-90×10(9) particles/mL; 1 hour) induced late apoptosis and necrosis; LNC and AcE-LNC (3-18×10(9) particles/mL; 48 hours) treatments reduced cell proliferation and delayed the cell cycle. Elevated levels of nitric oxide were found in supernatant of LNC and AcE-LNC, which were not dependent on nitric oxide synthase expressions. Daily intraperitoneal or oral treatment (days 3-10 after tumor injection) with LNC or AcE-LNC (1×10(12) particles/day), but not with AcE (50 mg/kg/day, same dose as AcE-LNC), reduced the volume of the tumor; nevertheless, intraperitoneal treatment caused toxicity. Oral LNC treatment was more efficient than AcE-LNC treatment. Moreover, oral treatment with nonencapsulated capric/caprylic triglyceride did not inhibit tumor development, implying that nanocapsule supramolecular structure is important to the therapeutic effects. Together, data herein presented highlight the relevance of the supramolecular structure of LNCs to toxicity on SK-Mel-28 cells and to the therapeutic efficacy on melanoma development in mice, conferring novel therapeutic mechanisms to LNC further than a drug delivery system.


Asunto(s)
Apoptosis/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Lípidos/química , Melanoma/tratamiento farmacológico , Nanocápsulas/administración & dosificación , Animales , Movimiento Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Citometría de Flujo , Humanos , Masculino , Melanoma/patología , Ratones , Ratones Endogámicos C57BL , Nanocápsulas/química , Poliésteres/química , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...