Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Cell Rep ; 43(3): 113962, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38483905

RESUMEN

Pneumolysin (Ply) is an indispensable cholesterol-dependent cytolysin for pneumococcal infection. Although Ply-induced disruption of pneumococci-containing endosomal vesicles is a prerequisite for the evasion of endolysosomal bacterial clearance, its potent activity can be a double-edged sword, having a detrimental effect on bacterial survivability by inducing severe endosomal disruption, bactericidal autophagy, and scaffold epithelial cell death. Thus, Ply activity must be maintained at optimal levels. We develop a highly sensitive assay to monitor endosomal disruption using NanoBiT-Nanobody, which shows that the pneumococcal sialidase NanA can fine-tune Ply activity by trimming sialic acid from cell-membrane-bound glycans. In addition, oseltamivir, an influenza A virus sialidase inhibitor, promotes Ply-induced endosomal disruption and cytotoxicity by inhibiting NanA activity in vitro and greater tissue damage and bacterial clearance in vivo. Our findings provide a foundation for innovative therapeutic strategies for severe pneumococcal infections by exploiting the duality of Ply activity.


Asunto(s)
Neuraminidasa , Infecciones Neumocócicas , Humanos , Neuraminidasa/metabolismo , Streptococcus pneumoniae/metabolismo , Estreptolisinas/metabolismo , Proteínas Bacterianas/metabolismo
2.
Dev Neurobiol ; 84(1): 3-17, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072668

RESUMEN

Transient expression of somatostatin (SST) has been observed in the olfactory epithelium (OE) and nerves of chick embryos. Intense expression of SST in these regions on embryonic days (E) 5-8 coincides with the migration of neurons producing gonadotropin-releasing hormone (GnRH) from the OE to the forebrain (FB), suggesting that SST plays a role in the development of GnRH neurons. Using in ovo electroporation of small interfering RNA, we found that the suppression of SST mRNA in the olfactory placode (OP) of E3.5 chick embryos significantly reduced the number of GnRH and Islet-1-immunoreactive neurons in the nasal region without affecting the entry of GnRH neurons into the FB at E5.5-6. SST knockdown did not lead to changes in the number of apoptotic, proliferating, or HuC/D-positive neuronal cells in the OE; therefore, it is possible that SST is involved in the neurogenesis/differentiation of GnRH neurons and OP-derived GnRH-negative migratory neurons. In whole OP explant cultures, we also found that SST or its analog octreotide treatment significantly increased the number of migratory GnRH neurons and the migratory distance from the explants. The co-application of an SST antagonist blocked the octreotide-induced increase in the number of GnRH neurons. Furthermore, the fasciculation of polysialylated neural cell adhesion molecule-immunoreactive fibers emerging from the explants was dependent on octreotide. Taken together, our results provide evidence that SST exerts facilitatory effects on the development of neurons expressing GnRH or Islet-1 and on GnRH neuronal migration, in addition to olfactory-related fiber fasciculation.


Asunto(s)
Hormona Liberadora de Gonadotropina , Octreótido , Animales , Embrión de Pollo , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Liberadora de Gonadotropina/farmacología , Octreótido/metabolismo , Octreótido/farmacología , Fasciculación/metabolismo , Neuronas/fisiología , Somatostatina/farmacología , Somatostatina/metabolismo , Movimiento Celular/fisiología
3.
EMBO Mol Med ; 15(12): e18028, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38009521

RESUMEN

Tumor endothelial cells (TECs) actively repress inflammatory responses and maintain an immune-excluded tumor phenotype. However, the molecular mechanisms that sustain TEC-mediated immunosuppression remain largely elusive. Here, we show that autophagy ablation in TECs boosts antitumor immunity by supporting infiltration and effector function of T-cells, thereby restricting melanoma growth. In melanoma-bearing mice, loss of TEC autophagy leads to the transcriptional expression of an immunostimulatory/inflammatory TEC phenotype driven by heightened NF-kB and STING signaling. In line, single-cell transcriptomic datasets from melanoma patients disclose an enriched InflammatoryHigh /AutophagyLow TEC phenotype in correlation with clinical responses to immunotherapy, and responders exhibit an increased presence of inflamed vessels interfacing with infiltrating CD8+ T-cells. Mechanistically, STING-dependent immunity in TECs is not critical for the immunomodulatory effects of autophagy ablation, since NF-kB-driven inflammation remains functional in STING/ATG5 double knockout TECs. Hence, our study identifies autophagy as a principal tumor vascular anti-inflammatory mechanism dampening melanoma antitumor immunity.


Asunto(s)
Melanoma , Humanos , Ratones , Animales , Melanoma/patología , Células Endoteliales/metabolismo , Linfocitos T CD8-positivos , FN-kappa B/metabolismo , Autofagia , Inmunoterapia , Microambiente Tumoral
4.
iScience ; 26(10): 108010, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37829206

RESUMEN

Astrocytes interact with not only synapses but also brain blood vessels through perivascular astrocyte endfeet (PV-AEF) to form the neurovascular unit (NVU). However, PV-AEF components have not been fully identified. Here, we biochemically isolated blood vessels from mouse brain homogenates and purified PV-AEF. The purified PV-AEF were observed in different sizes, similar to PV-AEF on brain blood vessels. Mass spectrometry analysis identified 9,762 proteins in the purified PV-AEF, including cell adhesion molecules, nectin-2δ, Kirrel2, and podoplanin. Immunofluorescence microscopic analysis revealed that nectin-2δ and podoplanin were concentrated mainly in arteries/arterioles and veins/venules of the mouse brain, whereas Kirrel2 was mainly in arteries/arterioles. Nectin-2α/δ, Kirrel2, and podoplanin were preferentially observed in large sizes of the purified PV-AEF. Furthermore, Kirrel2 potentially has cell adhesion activity of cultured astrocytes. Collectively, these results indicate that PV-AEF have heterogeneity in sizes and molecular components, implying different roles of PV-AEF in NVU function depending on vascular regions.

5.
Glia ; 71(12): 2753-2769, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37571859

RESUMEN

Neuronal ceroid lipofuscinosis is a group of pediatric neurodegenerative diseases. One of their causative genes, CLN10/CtsD, encodes cathepsin D, a major lysosomal protease. Central nervous system (CNS)-specific CtsD-deficient mice exhibit a neurodegenerative disease phenotype with accumulation of ceroid lipofuscins, granular osmiophilic deposits, and SQSTM1/p62. We focused on activated astrocytes and microglia in this neurodegenerative mouse brain, since there are few studies on the relationship between these accumulators and lysosomes in these glial cells. Activated microglia and astrocytes in this mouse thalamus at p24 were increased by approximately 2.5- and 4.6-fold compared with the control, while neurons were decreased by approximately half. Granular osmiophilic deposits were detected in microglial cell bodies and extended their processes in the thalamus. LAMP1-positive lysosomes, but not SQSTM1/p62 aggregates, accumulated in microglia of this mouse thalamus, whereas both lysosomes and SQSTM1/p62 aggregates accumulated in its astrocytes. TUNEL-positive signals were observed mainly in microglia, but few were observed in neurons and astrocytes. These signals were fragmented DNA from degenerated neurons engulfed by microglia or in the lysosomes of microglia. Abnormal autophagic vacuoles also accumulated in the lysosomes of microglia. Granular osmiophilic deposit-like structures localized to LAMP1-positive lysosomes in CtsD-deficient astrocytes. SQSTM1/p62-positive but LAMP1-negative membranous structures also accumulated in the astrocytes and were less condensed than typical granular osmiophilic deposits. These results suggest that CtsD deficiency leads to intracellular abnormalities in activated microglia and astrocytes in addition to neuronal degeneration.

6.
Heliyon ; 9(6): e17394, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37389060

RESUMEN

In-resin CLEM (Correlative Light and Electron Microscopy) of Epon-embedded cells involves correlating fluorescence microscopy with electron microscopy in the same Epon-embedded ultrathin section. This method offers the advantage of high positional accuracy compared to standard CLEM. However, it requires the expression of recombinant proteins. In order to detect the localization of endogenous target(s) and their localized ultrastructures of Epon-embedded samples using in-resin CLEM, we investigated whether immunological and affinity-labeling using fluorescent dyes applied to in-resin CLEM of Epon-embedded cells. The orange fluorescent (λem ∼550 nm) and far-red (λem ∼650 nm) fluorescent dyes examined maintained a sufficient level of fluorescent intensity after staining with osmium tetroxide and subsequent dehydration treatment with ethanol. Immunological in-resin CLEM of mitochondria and the Golgi apparatus was achieved using anti-TOM20, anti-GM130 antibodies, and fluorescent dyes. Two-color in-resin CLEM revealed that wheat germ agglutinin-puncta showed the ultrastructures of multivesicular body-like structures. Finally, taking the advantage of high positional accuracy, volume in-resin CLEM of mitochondria in the semi-thin section (2 µm thick) of Epon-embedded cells was performed by focused ion beam scanning electron microscopy. These results suggested that the application of immunological reaction and affinity-labeling with fluorescent dyes to in-resin CLEM of Epon-embedded cells is suitable for analyzing the localization of endogenous targets and their ultrastructures by scanning and transmission electron microscopy.

7.
Nat Med ; 29(6): 1448-1455, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37248302

RESUMEN

Abnormal α-synuclein aggregation is a key pathological feature of a group of neurodegenerative diseases known as synucleinopathies, which include Parkinson's disease (PD), dementia with Lewy bodies and multiple system atrophy (MSA). The pathogenic ß-sheet seed conformation of α-synuclein is found in various tissues, suggesting potential as a biomarker, but few studies have been able to reliably detect these seeds in serum samples. In this study, we developed a modified assay system, called immunoprecipitation-based real-time quaking-induced conversion (IP/RT-QuIC), which enables the detection of pathogenic α-synuclein seeds in the serum of individuals with synucleinopathies. In our internal first and second cohorts, IP/RT-QuIC showed high diagnostic performance for differentiating PD versus controls (area under the curve (AUC): 0.96 (95% confidence interval (CI) 0.95-0.99)/AUC: 0.93 (95% CI 0.84-1.00)) and MSA versus controls (AUC: 0.64 (95% CI 0.49-0.79)/AUC: 0.73 (95% CI 0.49-0.98)). IP/RT-QuIC also showed high diagnostic performance in differentiating individuals with PD (AUC: 0.86 (95% CI 0.74-0.99)) and MSA (AUC: 0.80 (95% CI 0.65-0.97)) from controls in a blinded external cohort. Notably, amplified seeds maintained disease-specific properties, allowing the differentiation of samples from individuals with PD versus MSA. In summary, here we present a novel platform that may allow the detection of individuals with synucleinopathies using serum samples.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Sinucleinopatías , Humanos , alfa-Sinucleína , Sinucleinopatías/patología , Enfermedad de Parkinson/diagnóstico , Atrofia de Múltiples Sistemas/diagnóstico , Biomarcadores , Enfermedad por Cuerpos de Lewy/diagnóstico
8.
Microscopy (Oxf) ; 72(5): 383-387, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37217182

RESUMEN

Correlative fluorescent and electron microscopic images of the same section of epoxy (or other polymer)-embedded samples, hereafter referred to as 'in-resin CLEM', have been developed to improve the positional accuracy and Z-axis resolution limitations of conventional correlative light and electron microscopy (CLEM). High-pressure freezing and quick-freezing substitution result in in-resin CLEM of acrylic-based resin-embedded cells expressing green fluorescent protein, yellow fluorescent protein, mVenus and mCherry, which are sensitive to osmium tetroxide. The identification of osmium-resistant fluorescent proteins leads to the development of in-resin CLEM of Epon-embedded cells. Using subtraction-based fluorescence microscopy with a photoconvertible fluorescent protein, mEosEM-E, its green fluorescence can be observed in thin sections of Epon-embedded cells, and two-color in-resin CLEM using mEosEM-E and mScarlet-H can be performed. Green fluorescent proteins, CoGFP variant 0 and mWasabi, and far-red fluorescent proteins, mCherry2 and mKate2, are available for in-resin CLEM of Epon-embedded cells using the standard procedure for Epon-embedding with additional incubation. Proximity labeling is applied to in-resin CLEM to overcome the limitations of fluorescent proteins in epoxy resin. These approaches will contribute significantly to the future of CLEM analysis.


Asunto(s)
Resinas Epoxi , Humanos , Microscopía Electrónica , Microscopía Fluorescente/métodos , Proteínas Fluorescentes Verdes , Células HeLa
9.
Methods Mol Biol ; 2564: 287-297, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36107349

RESUMEN

Postfixation with osmium tetroxide and Epon embedding are essential for the preservation and visualization of subcellular ultrastructures via electron microscopy. These chemical treatments diminish the fluorescent intensity of most fluorescent proteins in cells, creating a problem for the in-resin correlative light-electron microscopy (CLEM) of Epon-embedded mammalian cultured cells. We found that two green and two far-red fluorescent proteins retain their fluorescence after chemical fixation with glutaraldehyde, osmium tetroxide-staining, dehydration, and polymerization of Epon resins. Consequently, we could observe the fluorescence of fluorescent proteins in ultrathin sections of Epon-embedded cells via fluorescence microscopy, investigate ultrastructures of the cells in the same sections via electron microscopy, and correlate the fluorescent image with the electron microscopic image without chemical or physical distortion of the cells. In other words, referred as "in-resin CLEM" of Epon-embedded samples. This technique also improves the Z-axis resolution of fluorescent images. In this chapter, we introduce the detailed protocol for in-resin CLEM of Epon-embedded mammalian cultured cells using these fluorescent proteins.


Asunto(s)
Tetróxido de Osmio , Osmio , Animales , Células Cultivadas , Electrones , Glutaral , Mamíferos , Microscopía Electrónica
10.
Anat Rec (Hoboken) ; 306(2): 298-310, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36104941

RESUMEN

Cell migration from the olfactory placode (OP) is a well-known phenomenon wherein various cell types, such as gonadotropin-releasing hormone (GnRH)-producing neurons, migrate toward the telencephalon (TEL) during early embryonic development. However, the spatial relationship between early migratory cells and the forebrain is unclear. We examined the early development of whole-mount chick embryos to observe the three-dimensional spatial relationship among OP-derived migratory neurons, olfactory nerve (ON), and TEL. Migratory neurons that express highly polysialylated neural cell adhesion molecule (PSA-NCAM) emerge from the OP and spread over a relatively wide TEL area at the Hamburger and Hamilton (HH) stage 17. Most migratory neurons form a cellular cord between the olfactory pit and rostral TEL within HH18-20. The earliest axons from the olfactory epithelium (OE) were detected along this neuronal cord using DiI-labeling at HH21. Furthermore, a few PSA-NCAM-positive neurons were dispersed around the cellular cord and over the lateral TEL at HH18. A long cellular cord branch extending to the lateral TEL was transiently observed within HH18-24. These results suggest a novel migratory route of OP-derived neurons during the early developmental stages. Following GFP vector introduction into the OP of HH13-15 embryos, labeled neurons were detected around and within the lateral TEL at HH23 and HH27. At HH36, labeled cells were observed in the rostral-lateral TEL, including the olfactory bulb (OB) region. GFP-labeled and calretinin-positive neurons were detected in the OB, suggesting that early OP-derived neurons enter the forebrain and function as interneurons in the OB.


Asunto(s)
Neuronas , Bulbo Olfatorio , Telencéfalo , Animales , Embrión de Pollo , Axones , Movimiento Celular , Neuronas/metabolismo , Bulbo Olfatorio/embriología , Nervio Olfatorio/embriología , Prosencéfalo/embriología , Telencéfalo/embriología
11.
Science ; 378(6625): 1201-1207, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36520901

RESUMEN

Cell death induced by tumor necrosis factor (TNF) can be beneficial during infection by helping to mount proper immune responses. However, TNF-induced death can also drive a variety of inflammatory pathologies. Protectives brakes, or cell-death checkpoints, normally repress TNF cytotoxicity to protect the organism from its potential detrimental consequences. Thus, although TNF can kill, this only occurs when one of the checkpoints is inactivated. Here, we describe a checkpoint that prevents apoptosis through the detoxification of the cytotoxic complex IIa that forms upon TNF sensing. We found that autophagy-related 9A (ATG9A) and 200kD FAK family kinase-interacting protein (FIP200) promote the degradation of this complex through a light chain 3 (LC3)-independent lysosomal targeting pathway. This detoxification mechanism was found to counteract TNF receptor 1 (TNFR1)-mediated embryonic lethality and inflammatory skin disease in mouse models.


Asunto(s)
Apoptosis , Proteínas Relacionadas con la Autofagia , Proteínas de la Membrana , Factor de Necrosis Tumoral alfa , Proteínas de Transporte Vesicular , Animales , Ratones , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Dermatitis/genética , Dermatitis/metabolismo , Dermatitis/patología , Modelos Animales de Enfermedad , Pérdida del Embrión/genética , Pérdida del Embrión/metabolismo , Pérdida del Embrión/patología , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
12.
FEBS Lett ; 596(22): 2873-2888, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36056653

RESUMEN

The Golgi pH regulator (GPHR) is essential for maintaining the function and morphology of the Golgi apparatus through the regulation of luminal acidic pH. Abnormal morphology of the Golgi apparatus is associated with neurodegenerative diseases. Here, we found that knockout of GPHR in the mouse brain led to morphological changes in the Golgi apparatus and neurodegeneration, which included brain atrophy, neuronal cell death, and gliosis. Furthermore, in the GPHR knockout mouse brain, transcriptional activity of sterol regulatory element-binding protein 2 (SREBP2) decreased, resulting in a reduction in cholesterol levels. GPHR-deficient cells exhibited suppressed neurite outgrowth, which was recovered by exogenous expression of the active form of SREBP2. Our results show that GPHR-mediated luminal acidification of the Golgi apparatus maintains proper cholesterol levels and, thereby, neuronal morphology.


Asunto(s)
Aparato de Golgi , Proteína 2 de Unión a Elementos Reguladores de Esteroles , Animales , Ratones , Aparato de Golgi/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Ratones Noqueados , Colesterol/metabolismo , Concentración de Iones de Hidrógeno , Encéfalo/metabolismo
13.
Sci Rep ; 12(1): 11130, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35778550

RESUMEN

Biotin ligases have been developed as proximity biotinylation enzymes for analyses of the interactome. However, there has been no report on the application of proximity labeling for in-resin correlative light-electron microscopy of Epon-embedded cells. In this study, we established a proximity-labeled in-resin CLEM of Epon-embedded cells using miniTurbo, a biotin ligase. Biotinylation by miniTurbo was observed in cells within 10 min following the addition of biotin to the medium. Using fluorophore-conjugated streptavidin, intracellular biotinylated proteins were labeled after fixation of cells with a mixture of paraformaldehyde and glutaraldehyde. Fluorescence of these proteins was resistant to osmium tetroxide staining and was detected in 100-nm ultrathin sections of Epon-embedded cells. Ultrastructures of organelles were preserved well in the same sections. Fluorescence in sections was about 14-fold brighter than that in the sections of Epon-embedded cells expressing mCherry2 and was detectable for 14 days. When mitochondria-localized miniTurbo was expressed in the cells, mitochondria-like fluorescent signals were detected in the sections, and ultrastructures of mitochondria were observed as fluorescence-positive structures in the same sections by scanning electron microscopy. Proximity labeling using miniTurbo led to more stable and brighter fluorescent signals in the ultrathin sections of Epon-embedded cells, resulting in better performance of in-resin CLEM.


Asunto(s)
Biotina , Tetróxido de Osmio , Microscopía Electrónica de Rastreo , Orgánulos/ultraestructura , Resinas de Plantas , Coloración y Etiquetado
14.
Sci Rep ; 12(1): 11662, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35804072

RESUMEN

Neuronal ceroid lipofuscinosis is one of many neurodegenerative storage diseases characterized by excessive accumulation of lipofuscins. CLN10 disease, an early infantile neuronal ceroid lipofuscinosis, is associated with a gene that encodes cathepsin D (CtsD), one of the major lysosomal proteases. Whole body CtsD-knockout mice show neurodegenerative phenotypes with the accumulation of lipofuscins in the brain and also show defects in other tissues including intestinal necrosis. To clarify the precise role of CtsD in the central nervous system (CNS), we generated a CNS-specific CtsD-knockout mouse (CtsD-CKO). CtsD-CKO mice were born normally but developed seizures and their growth stunted at around postnatal day 23 ± 1. CtsD-CKO did not exhibit apparent intestinal symptoms as those observed in whole body knockout. Histologically, autofluorescent materials were detected in several areas of the CtsD-CKO mouse's brain, including: thalamus, cerebral cortex, hippocampus, and cerebellum. Expression of ubiquitin and autophagy-associated proteins was also increased, suggesting that the autophagy-lysosome system was impaired. Microglia and astrocytes were activated in the CtsD-CKO thalamus, and inducible nitric oxide synthase (iNOS), an inflammation marker, was increased in the microglia. Interestingly, deposits of proteinopathy-related proteins, phosphorylated α-synuclein, and Tau protein were also increased in the thalamus of CtsD-CKO infant mice. Considering these results, we propose thatt the CtsD-CKO mouse is a useful mouse model to investigate the contribution of cathepsin D to the early phases of neurodegenerative diseases in relation to lipofuscins, proteinopathy-related proteins and activation of microglia and astrocytes.


Asunto(s)
Catepsina D/metabolismo , Lipofuscinosis Ceroideas Neuronales , Animales , Astrocitos/metabolismo , Catepsina D/genética , Sistema Nervioso Central/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Noqueados , Microglía/metabolismo , Lipofuscinosis Ceroideas Neuronales/patología
15.
J Comp Neurol ; 530(17): 2977-2993, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35844047

RESUMEN

The olfactory placode (OP) of vertebrates generates several classes of migrating cells, including hypothalamic gonadotropin-releasing hormone (GnRH)-producing neurons, which play essential roles in the reproduction system. Previous studies using OP cell labeling have demonstrated that OP-derived non-GnRH cells enter the developing forebrain; however, their final fates and phenotypes are less well understood. In chick embryos, a subpopulation of migratory cells from the OP that is distinct from GnRH neurons transiently expresses somatostatin (SS). We postulated that these cells are destined to develop into brain neurons. In this study, we examined the expression pattern of SS mRNA in the olfactory-forebrain region during development, as well as the destination of OP-derived migratory cells, including SS mRNA-expressing cells. Utilizing the Tol2 genomic integration system to induce long-term fluorescent protein expression in OP cells, we found that OP-derived migratory cells labeled at embryonic day (E) 3 resided in the olfactory nerve and medial forebrain at E17-19. A subpopulation of green fluorescent protein (GFP)-labeled GnRH neurons that remained in the olfactory nerve was considered to comprise terminal nerve neurons. In the forebrain, GFP-labeled cells showed a distribution pattern similar to that of GnRH neurons. A large proportion of GFP-labeled cells expressed the mature neuronal marker NeuN. Among the GFP-labeled cells, the percentage of GnRH neurons was low, while the remaining GnRH-negative neurons either expressed SS mRNA, neuropeptide Y, or calbindin D-28k or did not express any of them. These results indicate that a diverse population of OP-derived neuronal cells, other than GnRH neurons, integrates into the chick medial forebrain.


Asunto(s)
Hormona Liberadora de Gonadotropina , Neuropéptido Y , Animales , Calbindinas/metabolismo , Movimiento Celular/fisiología , Embrión de Pollo , Pollos/metabolismo , Hormona Liberadora de Gonadotropina/genética , Proteínas Fluorescentes Verdes/metabolismo , Neuronas/metabolismo , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Prosencéfalo/metabolismo , ARN Mensajero/metabolismo , Somatostatina/genética , Somatostatina/metabolismo
16.
Surg Today ; 52(7): 989-994, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35606618

RESUMEN

This article translates the guidelines for cadaver surgical training (CST) published in 2012 by Japan Surgical Society (JSS) and Japanese Association of Anatomists from Japanese to English. These guidelines are based on Japanese laws and enable the usage of donated cadavers for CST and clinical research. The following are the conditions to implement the activities outlined in the guidelines. The aim is to improve medicine and to contribute to social welfare. Activities should only be carried out at medical or dental universities under the centralized control by the department of anatomy under the regulation of Japanese law. Upon the usage of cadavers, registered donors must provide a written informed-consent for their body to be used for CST and other activities of clinical medicine. Commercial use of cadavers and profit-based CST is strongly prohibited. Moreover, all the cadaver-related activities except for the commercial-based ones require the approval of the University's Institutional Review Board (IRB) before implementation. The expert committee organized at each university for the implementation of CST should summarize the implementation of the program and report the details of the training program, operating costs, and conflicts of interest to the CST Promotion Committee of JSS.


Asunto(s)
Anatomistas , Medicina Clínica , Cadáver , Disección , Humanos , Japón
17.
Anat Sci Int ; 97(3): 235-240, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35606673

RESUMEN

This article translates the guidelines for cadaver surgical training (CST) published in 2012 by Japan Surgical Society (JSS) and Japanese Association of Anatomists from Japanese to English. These guidelines are based on Japanese laws and enable the usage of donated cadavers for CST and clinical research. The following are the conditions to implement the activities outlined in the guidelines. The aim is to improve medicine and to contribute to social welfare. Activities should only be carried out at medical or dental universities under the centralized control by the department of anatomy under the regulation of Japanese law. Upon the usage of cadavers, registered donors must provide a written informed-consent for their body to be used for CST and other activities of clinical medicine. Commercial use of cadavers and profit-based CST is strongly prohibited. Moreover, all the cadaver-related activities except for the commercial-based ones require the approval of the University's Institutional Review Board (IRB) before implementation. The expert committee organized at each university for the implementation of CST should summarize the implementation of the program and report the details of the training program, operating costs, and conflicts of interest to the CST Promotion Committee of JSS.


Asunto(s)
Anatomistas , Anatomía , Medicina Clínica , Anatomía/educación , Cadáver , Disección/educación , Humanos , Japón
18.
Proc Natl Acad Sci U S A ; 119(18): e2200582119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35476530

RESUMEN

The P4-ATPases ATP11A and ATP11C function as flippases at the plasma membrane to translocate phosphatidylserine from the outer to the inner leaflet. We herein demonstrated that Atp11a-deficient mouse embryos died at approximately E14.5 with thin-walled heart ventricles. However, the cardiomyocyte- or epiblast-specific Atp11a deletion did not affect mouse development or mortality. ATP11C may have compensated for the function of ATP11A in most of the cell types in the embryo. On the other hand, Atp11a, but not Atp11c, was expressed in the mouse placenta, and the Atp11a-null mutation caused poor development of the labyrinthine layer with an increased number of TUNEL-positive foci. Immunohistochemistry and electron microscopy revealed a disorganized labyrinthine layer with unfused trophoblasts in the Atp11a-null placenta. Human placenta-derived choriocarcinoma BeWo cells expressed the ATP11A and ATP11C genes. A lack of ATP11A and ATP11C eliminated the ability of BeWo cells to flip phosphatidylserine and fuse when treated with forskolin. These results indicate that flippases at the plasma membrane play an important role in the formation of syncytiotrophoblasts in placental development.


Asunto(s)
Placenta , Trofoblastos , Transportador 1 de Casete de Unión a ATP , Adenosina Trifosfatasas/metabolismo , Animales , Membrana Celular/metabolismo , Femenino , Ratones , Fosfatidilserinas/metabolismo , Placenta/metabolismo , Embarazo , Trofoblastos/metabolismo
19.
iScience ; 25(1): 103601, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35106459

RESUMEN

The mammalian brain is organized over sizes that span several orders of magnitude, from synapses to the entire brain. Thus, a technique to visualize neural circuits across multiple spatial scales (multi-scale neuronal imaging) is vital for deciphering brain-wide connectivity. Here, we developed this technique by coupling successive light microscopy/electron microscopy (LM/EM) imaging with a glutaraldehyde-resistant tissue clearing method, ScaleSF. Our multi-scale neuronal imaging incorporates (1) brain-wide macroscopic observation, (2) mesoscopic circuit mapping, (3) microscopic subcellular imaging, and (4) EM imaging of nanoscopic structures, allowing seamless integration of structural information from the brain to synapses. We applied this technique to three neural circuits of two different species, mouse striatofugal, mouse callosal, and marmoset corticostriatal projection systems, and succeeded in simultaneous interrogation of their circuit structure and synaptic connectivity in a targeted way. Our multi-scale neuronal imaging will significantly advance the understanding of brain-wide connectivity by expanding the scales of objects.

20.
J Clin Invest ; 131(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34403372

RESUMEN

ATP11A translocates phosphatidylserine (PtdSer), but not phosphatidylcholine (PtdCho), from the outer to the inner leaflet of plasma membranes, thereby maintaining the asymmetric distribution of PtdSer. Here, we detected a de novo heterozygous point mutation of ATP11A in a patient with developmental delays and neurological deterioration. Mice carrying the corresponding mutation died perinatally of neurological disorders. This mutation caused an amino acid substitution (Q84E) in the first transmembrane segment of ATP11A, and mutant ATP11A flipped PtdCho. Molecular dynamics simulations revealed that the mutation allowed PtdCho binding at the substrate entry site. Aberrant PtdCho flipping markedly decreased the concentration of PtdCho in the outer leaflet of plasma membranes, whereas sphingomyelin (SM) concentrations in the outer leaflet increased. This change in the distribution of phospholipids altered cell characteristics, including cell growth, cholesterol homeostasis, and sensitivity to sphingomyelinase. Matrix-assisted laser desorption ionization-imaging mass spectrometry (MALDI-IMS) showed a marked increase of SM levels in the brains of Q84E-knockin mouse embryos. These results provide insights into the physiological importance of the substrate specificity of plasma membrane flippases for the proper distribution of PtdCho and SM.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Fosfatidilcolinas/metabolismo , Mutación Puntual , Transportador 1 de Casete de Unión a ATP/deficiencia , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Adulto , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Encéfalo/diagnóstico por imagen , Membrana Celular/metabolismo , Femenino , Genes Letales , Heterocigoto , Humanos , Masculino , Lípidos de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Mutantes , Simulación de Dinámica Molecular , Enfermedades Neurodegenerativas/diagnóstico por imagen , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...