Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Dairy Res ; 82(2): 135-42, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25499614

RESUMEN

The heat-induced changes in pH, Ca activity and viscosity after heating at 90 °C for 10 min of five modified skim milks were studied as a function of the initial pH of the milks at 25 °C. The milks had (i) different ratios of casein : whey protein (0.03, 1.74, 3.97, 5.27 and 7.25), (ii) the same total solids concentration (9% w/w) and (iii) prior to the adjustment of the pH, similar values of pH (6.67-6.74), concentration of serum calcium, and calcium activity, suggesting that the sera have similar mineral composition. The total protein concentrations of the milks differ (2.8-4.0%, w/w). The pH decrease in situ upon heating from 25-90 °C was similar for all the modified skim milks with the same starting pH, suggesting that the pH changes to milk on heating were primarily mediated by the initial mineral composition of the serum and were unaffected by the casein : whey protein ratio or the total protein content of the milk. The heat-induced changes in pH and calcium activity were largely reversible on cooling. The two milks with the lowest ratios of casein to whey protein gelled on heating to 90 °C for 10 min and cooling to 25 °C when the pH was adjusted to pH = 6.2 prior to heating. The viscosities of all other milks with casein to whey protein ratio of 3.97, 5.27 and 7.25 and/or pH ≥6.7 prior to heating did not change significantly. The effect of casein : whey protein ratio and the pH are the dominant factors in controlling the susceptibility to thickening of the milks on heating in this study.


Asunto(s)
Caseínas/química , Calor , Leche/química , Proteína de Suero de Leche/química , Animales , Calcio/química , Bovinos , Concentración de Iones de Hidrógeno , Polvos , Reología
2.
J Dairy Res ; 79(1): 76-83, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22127220

RESUMEN

The effects of high pressure (HP) treatment (100-400 MPa at 10-60 °C) on the solubility of milk protein concentrate (MPC) powders were tested. The solubility, measured at 20 °C, of fresh MPC powders made with no HP treatment was 66%. It decreased by 10% when stored for 6 weeks at ambient temperature (~20 °C) and continued to decrease to less than 50% of its initial solubility after 12 months of storage. Of the combinations of pressure and heat used, a pressure of 200 MPa at 40 °C applied to the concentrate before spray drying was found to be the most beneficial for improved solubility of MPC powders. This combination of pressure/heat improved the initial cold water solubility to 85%. The solubility was maintained at this level after 6 weeks storage at ambient temperature and 85% of the initial solubility was preserved after 12 months. The improved solubility of MPC powders on manufacture and on storage are attributed to an altered surface composition arising from an increased concentration of non-micellar casein in the milk due to HP treatment prior to drying. The improved solubility of high protein powders (95% protein) made from blends of sodium caseinate and whey protein isolate compared with MPC powders (~85% protein) made from ultrafiltered/diafiltered milk confirmed the detrimental role of micellar casein on solubility. The results suggest that increasing the non-micellar casein content by HP treatment of milk or use of blends of sodium caseinate and whey proteins are strategies that may be used to obtain high protein milk powders with enhanced solubility.


Asunto(s)
Manipulación de Alimentos/métodos , Proteínas de la Leche/química , Agua/química , Calcio/química , Caseínas/química , Concentración de Iones de Hidrógeno , Presión , Solubilidad , Proteína de Suero de Leche
3.
J Dairy Res ; 77(3): 257-64, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20196897

RESUMEN

The pH and calcium activity of reconstituted skim milk solutions (9-21% w/w milk solids non-fat) on heating and after cooling were studied as a function of milk pH prior to heating (pH 6.2-7.2 at 25 degrees C) and added calcium complexing agents (phosphate or EDTA). The pH decreased as the temperature was raised from 25 to 90 degrees C and the magnitude of the pH decrease was greater with increase in initial pH at 25 degrees C before heating or milk concentration. The pH decrease on heating from 25 to 90 degrees C in skim milk solutions with added calcium complexing agents was lower than that of milk without the addition of these salts. The calcium activity decreased on heating from 25 to 60 degrees C. The magnitude of the change decreased with increase in initial pH at 25 degrees C before heating and milk concentration. The decrease in calcium activity on heating from 25 to 60 degrees C for skim milk solutions with added calcium complexing agents was lower than that of milk solutions without the addition of calcium complexing agents. The changes in pH and calcium activity on heating milk were largely reversible after cooling the milk. The results suggested that the pH and calcium activity at high temperatures are a function of the milk composition. Knowledge of the initial pH prior to heating alone is not sufficient for predicting the changes that occur during heating.


Asunto(s)
Calcio/análisis , Leche/química , Animales , Ácido Edético/farmacología , Calor , Concentración de Iones de Hidrógeno , Leche/efectos de los fármacos , Fosfatos/farmacología
4.
Adv Food Nutr Res ; 53: 1-38, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17900495

RESUMEN

The inherent physical functionality of dairy ingredients makes them useful in a range of food applications. These functionalities include their solubility, water binding, viscosity, gelation, heat stability, renneting, foaming, and emulsifying properties. The suitability of dairy ingredients for an application can be further tailored by altering the structure of the proteins using appropriate processes. The processes discussed include physical modification (heat treatment, acidification, addition of mineral slats, homogenization, and shear), enzymatic modification (renneting, hydrolysis, and transglutamination), and chemical modification (use of chemical agents and the Maillard reaction). Emerging food processes (high pressure and ultrasound) are also discussed. The challenges for using dairy ingredients for the delivery of nutrients and bioactive components, while maintaining physical functionality, are also highlighted. There is a need for continued research into the fundamental aspects of milk proteins and their responses to various stresses for further differentiation of milk products and for the delivery of ingredients with consistent quality for target applications.


Asunto(s)
Química Física , Manipulación de Alimentos/métodos , Tecnología de Alimentos , Proteínas de la Leche/química , Leche/química , Animales , Bovinos , Fenómenos Químicos , Emulsiones , Conservación de Alimentos/métodos , Geles , Calor , Humanos , Concentración de Iones de Hidrógeno , Reacción de Maillard , Leche/enzimología , Proteínas de la Leche/metabolismo , Solubilidad , Relación Estructura-Actividad , Viscosidad
5.
J Dairy Res ; 70(4): 453-9, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14649417

RESUMEN

Sedimentation Field Flow Fractionation (SdFFF) was combined with Photon Correlation Spectroscopy (PCS), to characterize changes in the structure of the colloidal particles of reconstituted skim milk of diameter >50 nm (aggregates of casein and calcium phosphate known as casein micelles) with the changes in partitioning (with the addition of salt) of calcium (Ca), inorganic phosphate (Pi) and casein between the serum and colloidal phases of the milk. The number weighted particle size distributions are determined. These are well represented by a log-normal distribution. Methods are presented for estimating the relative contributions of scattering and absorbance to the SdFFF detector signal and for taking both into account when analysing SdFFF data. The values found for the effective density of the casein micelles were in good agreement with the literature and ranged from (1.06-1.08 g cm(-3)) according to the composition of micelles. The changes in the scattering intensity as determined by PCS correlated with the changes in the particle composition. Although the concentrations of colloidal calcium phosphate (CCP) (1.1-3.5 g/kg milk) and micellar casein (18.1-27.2 g/kg milk) varied considerably only small changes in the size distribution of particles >50 nm diameter were observed except for milk to which 30 mmol Pi+10 mmol Ca/kg milk had been added where the particle size distribution shows a swelling of the particles consistent with a lower than expected value for the particle density. These observations suggest that the micelles have the ability to both lose (depleted micelles) and accommodate (enriched micelles) more casein, calcium and inorganic phosphate in their interior, thus confirming the model of the micelles which postulates an open structure allowing freedom of movement of casein and small ions.


Asunto(s)
Caseínas/análisis , Fraccionamiento de Campo-Flujo/métodos , Leche/química , Análisis Espectral/métodos , Animales , Fosfatos de Calcio/análisis , Fosfatos de Calcio/química , Caseínas/química , Modelos Lineales , Micelas , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...