Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38496657

RESUMEN

Recent biotechnological developments in cryo-electron tomography allow direct visualization of native sub-cellular structures with unprecedented details and provide essential information on protein functions/dysfunctions. Denoising can enhance the visualization of protein structures and distributions. Automatic annotation via data simulation can ameliorate the time-consuming manual labeling of large-scale datasets. Here, we combine the two major cryo-ET tasks together in DUAL, by a specific cyclic generative adversarial network with novel noise disentanglement. This enables end-to-end unsupervised learning that requires no labeled data for training. The denoising branch outperforms existing works and substantially improves downstream particle picking accuracy on benchmark datasets. The simulation branch provides learning-based cryo-ET simulation for the first time and generates synthetic tomograms indistinguishable from experimental ones. Through comprehensive evaluations, we showcase the effectiveness of DUAL in detecting macromolecular complexes across a wide range of molecular weights in experimental datasets. The versatility of DUAL is expected to empower cryo-ET researchers by improving visual interpretability, enhancing structural detection accuracy, expediting annotation processes, facilitating cross-domain model adaptability, and compensating for missing wedge artifacts. Our work represents a significant advancement in the unsupervised mining of protein structures in cryo-ET, offering a multifaceted tool that facilitates cryo-ET research.

2.
Front Mol Biosci ; 10: 1147514, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37214339

RESUMEN

In this work, we address the problem of detecting anomalies in a certain laboratory automation setting. At first, we collect video images of liquid transfer in automated laboratory experiments. We mimic the real-world challenges of developing an anomaly detection model by considering two points. First, the size of the collected dataset is set to be relatively small compared to large-scale video datasets. Second, the dataset has a class imbalance problem where the majority of the collected videos are from abnormal events. Consequently, the existing learning-based video anomaly detection methods do not perform well. To this end, we develop a practical human-engineered feature extraction method to detect anomalies from the liquid transfer video images. Our simple yet effective method outperforms state-of-the-art anomaly detection methods with a notable margin. In particular, the proposed method provides 19% and 76% average improvement in AUC and Equal Error Rate, respectively. Our method also quantifies the anomalies and provides significant benefits for deployment in the real-world experimental setting.

4.
J Mol Biol ; 435(9): 168068, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37003470

RESUMEN

Cryo-electron tomography can uniquely probe the native cellular environment for macromolecular structures. Tomograms feature complex data with densities of diverse, densely crowded macromolecular complexes, low signal-to-noise, and artifacts such as the missing wedge effect. Post-processing of this data generally involves isolating regions or particles of interest from tomograms, organizing them into related groups, and rendering final structures through subtomogram averaging. Template-matching and reference-based structure determination are popular analysis methods but are vulnerable to biases and can often require significant user input. Most importantly, these approaches cannot identify novel complexes that reside within the imaged cellular environment. To reliably extract and resolve structures of interest, efficient and unbiased approaches are therefore of great value. This review highlights notable computational software and discusses how they contribute to making automated structural pattern discovery a possibility. Perspectives emphasizing the importance of features for user-friendliness and accessibility are also presented.


Asunto(s)
Tomografía con Microscopio Electrónico , Programas Informáticos , Tomografía con Microscopio Electrónico/métodos , Sustancias Macromoleculares/química , Microscopía por Crioelectrón/métodos , Procesamiento de Imagen Asistido por Computador/métodos
5.
Nat Cancer ; 4(4): 516-534, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36927792

RESUMEN

T cell-centric immunotherapies have shown modest clinical benefit thus far for estrogen receptor-positive (ER+) breast cancer. Despite accounting for 70% of all breast cancers, relatively little is known about the immunobiology of ER+ breast cancer in women with invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC). To investigate this, we performed phenotypic, transcriptional and functional analyses for a cohort of treatment-naive IDC (n = 94) and ILC (n = 87) tumors. We show that macrophages, and not T cells, are the predominant immune cells infiltrating the tumor bed and the most transcriptionally diverse cell subset between IDC and ILC. Analysis of cellular neighborhoods revealed an interplay between macrophages and T cells associated with longer disease-free survival in IDC but not ILC. Our datasets provide a rich resource for further interrogation into immune cell dynamics in ER+ IDC and ILC and highlight macrophages as a potential target for ER+ breast cancer.


Asunto(s)
Neoplasias de la Mama , Carcinoma Ductal de Mama , Carcinoma Lobular , Femenino , Humanos , Carcinoma Lobular/tratamiento farmacológico , Neoplasias de la Mama/tratamiento farmacológico , Carcinoma Ductal de Mama/tratamiento farmacológico , Resultado del Tratamiento , Supervivencia sin Enfermedad , Microambiente Tumoral
6.
Artículo en Inglés | MEDLINE | ID: mdl-36188422

RESUMEN

In many real-life image analysis applications, particularly in biomedical research domains, the objects of interest undergo multiple transformations that alters their visual properties while keeping the semantic content unchanged. Disentangling images into semantic content factors and transformations can provide significant benefits into many domain-specific image analysis tasks. To this end, we propose a generic unsupervised framework, Harmony, that simultaneously and explicitly disentangles semantic content from multiple parameterized transformations. Harmony leverages a simple cross-contrastive learning framework with multiple explicitly parameterized latent representations to disentangle content from transformations. To demonstrate the efficacy of Harmony, we apply it to disentangle image semantic content from several parameterized transformations (rotation, translation, scaling, and contrast). Harmony achieves significantly improved disentanglement over the baseline models on several image datasets of diverse domains. With such disentanglement, Harmony is demonstrated to incentivize bioimage analysis research by modeling structural heterogeneity of macromolecules from cryo-ET images and learning transformation-invariant representations of protein particles from single-particle cryo-EM images. Harmony also performs very well in disentangling content from 3D transformations and can perform coarse and fast alignment of 3D cryo-ET subtomograms. Therefore, Harmony is generalizable to many other imaging domains and can potentially be extended to domains beyond imaging as well.

7.
Front Physiol ; 13: 957484, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36111160

RESUMEN

Macromolecular structure classification from cryo-electron tomography (cryo-ET) data is important for understanding macro-molecular dynamics. It has a wide range of applications and is essential in enhancing our knowledge of the sub-cellular environment. However, a major limitation has been insufficient labelled cryo-ET data. In this work, we use Contrastive Self-supervised Learning (CSSL) to improve the previous approaches for macromolecular structure classification from cryo-ET data with limited labels. We first pretrain an encoder with unlabelled data using CSSL and then fine-tune the pretrained weights on the downstream classification task. To this end, we design a cryo-ET domain-specific data-augmentation pipeline. The benefit of augmenting cryo-ET datasets is most prominent when the original dataset is limited in size. Overall, extensive experiments performed on real and simulated cryo-ET data in the semi-supervised learning setting demonstrate the effectiveness of our approach in macromolecular labeling and classification.

8.
J Comput Biol ; 29(8): 932-941, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35862434

RESUMEN

The revolutionary technique cryoelectron tomography (cryo-ET) enables imaging of cellular structure and organization in a near-native environment at submolecular resolution, which is vital to subsequent data analysis and modeling. The conventional structure detection process first reconstructs the three-dimensional (3D) tomogram from a series of two-dimensional (2D) projections and then directly detects subcellular components found within the tomogram. However, this process is challenging due to potential structural information loss during the tomographic reconstruction and the limited scope of existing methods since most major state-of-the-art object detection methods are designed for 2D rather than 3D images. Therefore, in this article, as an alternative approach to complement the conventional process, we propose a novel 2D-to-3D framework that detects structures within 2D projection images before reconstructing the results back to 3D. We implemented the proposed framework as three specific algorithms for three individual tasks: semantic segmentation, edge detection, and object localization. As experimental validation of the 2D-to-3D framework for cryo-ET data, we applied the algorithms to the segmentation of mitochondrial calcium phosphate granules, detection of spherical edges, and localization of mitochondria. Quantitative and qualitative results show better performance for prediction tasks of segmentation on the 2D projections and promising performance on object localization and edge detection, paving the way for future studies in the exploration of cryo-ET for in situ structural biology.


Asunto(s)
Tomografía con Microscopio Electrónico , Procesamiento de Imagen Asistido por Computador , Algoritmos , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos
9.
Bioinformatics ; 38(4): 977-984, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34897387

RESUMEN

MOTIVATION: Cryo-Electron Tomography (cryo-ET) is a 3D imaging technology that enables the visualization of subcellular structures in situ at near-atomic resolution. Cellular cryo-ET images help in resolving the structures of macromolecules and determining their spatial relationship in a single cell, which has broad significance in cell and structural biology. Subtomogram classification and recognition constitute a primary step in the systematic recovery of these macromolecular structures. Supervised deep learning methods have been proven to be highly accurate and efficient for subtomogram classification, but suffer from limited applicability due to scarcity of annotated data. While generating simulated data for training supervised models is a potential solution, a sizeable difference in the image intensity distribution in generated data as compared with real experimental data will cause the trained models to perform poorly in predicting classes on real subtomograms. RESULTS: In this work, we present Cryo-Shift, a fully unsupervised domain adaptation and randomization framework for deep learning-based cross-domain subtomogram classification. We use unsupervised multi-adversarial domain adaption to reduce the domain shift between features of simulated and experimental data. We develop a network-driven domain randomization procedure with 'warp' modules to alter the simulated data and help the classifier generalize better on experimental data. We do not use any labeled experimental data to train our model, whereas some of the existing alternative approaches require labeled experimental samples for cross-domain classification. Nevertheless, Cryo-Shift outperforms the existing alternative approaches in cross-domain subtomogram classification in extensive evaluation studies demonstrated herein using both simulated and experimental data. AVAILABILITYAND IMPLEMENTATION: https://github.com/xulabs/aitom. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Electrones , Imagenología Tridimensional/métodos , Estructura Molecular , Distribución Aleatoria
10.
Proc Int Conf Image Proc ; 2022: 1611-1615, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37021115

RESUMEN

Cryo-Electron Tomography (cryo-ET) is an emerging 3D imaging technique which shows great potentials in structural biology research. One of the main challenges is to perform classification of macromolecules captured by cryo-ET. Recent efforts exploit deep learning to address this challenge. However, training reliable deep models usually requires a huge amount of labeled data in supervised fashion. Annotating cryo-ET data is arguably very expensive. Deep Active Learning (DAL) can be used to reduce labeling cost while not sacrificing the task performance too much. Nevertheless, most existing methods resort to auxiliary models or complex fashions (e.g. adversarial learning) for uncertainty estimation, the core of DAL. These models need to be highly customized for cryo-ET tasks which require 3D networks, and extra efforts are also indispensable for tuning these models, rendering a difficulty of deployment on cryo-ET tasks. To address these challenges, we propose a novel metric for data selection in DAL, which can also be leveraged as a regularizer of the empirical loss, further boosting the task model. We demonstrate the superiority of our method via extensive experiments on both simulated and real cryo-ET datasets. Our source Code and Appendix can be found at this URL.

11.
Bioinformatics ; 36(17): 4599-4608, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32437517

RESUMEN

MOTIVATION: Protein structures provide basic insight into how they can interact with other proteins, their functions and biological roles in an organism. Experimental methods (e.g. X-ray crystallography and nuclear magnetic resonance spectroscopy) for predicting the secondary structure (SS) of proteins are very expensive and time consuming. Therefore, developing efficient computational approaches for predicting the SS of protein is of utmost importance. Advances in developing highly accurate SS prediction methods have mostly been focused on 3-class (Q3) structure prediction. However, 8-class (Q8) resolution of SS contains more useful information and is much more challenging than the Q3 prediction. RESULTS: We present SAINT, a highly accurate method for Q8 structure prediction, which incorporates self-attention mechanism (a concept from natural language processing) with the Deep Inception-Inside-Inception network in order to effectively capture both the short- and long-range interactions among the amino acid residues. SAINT offers a more interpretable framework than the typical black-box deep neural network methods. Through an extensive evaluation study, we report the performance of SAINT in comparison with the existing best methods on a collection of benchmark datasets, namely, TEST2016, TEST2018, CASP12 and CASP13. Our results suggest that self-attention mechanism improves the prediction accuracy and outperforms the existing best alternate methods. SAINT is the first of its kind and offers the best known Q8 accuracy. Thus, we believe SAINT represents a major step toward the accurate and reliable prediction of SSs of proteins. AVAILABILITY AND IMPLEMENTATION: SAINT is freely available as an open-source project at https://github.com/SAINTProtein/SAINT.


Asunto(s)
Aprendizaje Profundo , Bases de Datos de Proteínas , Redes Neurales de la Computación , Estructura Secundaria de Proteína , Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...