Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 12(11)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35681828

RESUMEN

Satellite cells take an indispensable place in skeletal muscle regeneration, maintenance, and growth. However, only limited works have investigated effects of dietary compounds on the proliferation of porcine satellite cells (PSCs) and related mechanisms. Sulforaphane (SFN) at multiple levels was applied to PSCs. The PSCs' viability and HDAC activity were measured with a WST-1 cell proliferation kit and Color-de-Lys® HDAC colorimetric activity assay kit. Gene expression and epigenetics modification were tested with qRT-PCR, Western blot, bisulfite sequencing, and ChIP-qPCR. This study found that SFN enhanced PSC proliferation and altered mRNA expression levels of myogenic regulatory factors. In addition, SFN inhibited histone deacetylase (HDAC) activity, disturbed mRNA levels of HDAC family members, and elevated acetylated histone H3 and H4 abundance in PSCs. Furthermore, both mRNA and protein levels of the Smad family member 7 (SMAD7) in PSCs were upregulated after SFN treatment. Finally, it was found that SFN increased the acetylation level of histone H4 in the SMAD7 promoter, decreased the expression of microRNAs, including ssc-miR-15a, ssc-miR-15b, ssc-miR-92a, ssc-miR-17-5p, ssc-miR-20a-5p, and ssc-miR-106a, targeting SMAD7, but did not impact on the SMAD7 promoter's methylation status in PSCs. In summary, SFN was found to boost PSC proliferation and epigenetically increase porcine SMAD7 expression, which indicates a potential application of SFN in modulation of skeletal muscle growth.

2.
Innate Immun ; 22(8): 682-695, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27688705

RESUMEN

Pulmonary alveolar macrophages (AMs) are important in defense against bacterial lung inflammation. Cluster of differentiation 14 (CD14) is involved in recognizing bacterial lipopolysaccharide (LPS) through MyD88-dependent and TRIF pathways of innate immunity. Sulforaphane (SFN) shows anti-inflammatory activity and suppresses DNA methylation. To identify CD14 epigenetic changes by SFN in the LPS-induced TRIF pathway, an AMs model was investigated in vitro. CD14 gene expression was induced by 5 µg/ml LPS at the time point of 12 h and suppressed by 5 µM SFN. After 12 h of LPS stimulation, gene expression was significantly up-regulated, including TRIF, TRAF6, NF-κB, TRAF3, IRF7, TNF-α, IL-1ß, IL-6, and IFN-ß. LPS-induced TRAM, TRIF, RIPK1, TRAF3, TNF-α, IL-1ß and IFN-ß were suppressed by 5 µM SFN. Similarly, DNMT3a expression was increased by LPS but significantly down-regulated by 5 µM SFN. It showed positive correlation of CD14 gene body methylation with in LPS-stimulated AMs, and this methylation status was inhibited by SFN. This study suggests that SFN suppresses CD14 activation in bacterial inflammation through epigenetic regulation of CD14 gene body methylation associated with DNMT3a. The results provide insights into SFN-mediated epigenetic down-regulation of CD14 in LPS-induced TRIF pathway inflammation and may lead to new methods for controlling LPS-induced inflammation in pigs.


Asunto(s)
Infecciones Bacterianas/inmunología , Epigénesis Genética/efectos de los fármacos , Isotiocianatos/farmacología , Receptores de Lipopolisacáridos/metabolismo , Macrófagos Alveolares/efectos de los fármacos , Neumonía/inmunología , Alveolos Pulmonares/patología , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Células Cultivadas , Metilación de ADN , Inmunidad Innata , Lipopolisacáridos/inmunología , Macrófagos Alveolares/inmunología , Transducción de Señal/efectos de los fármacos , Sulfóxidos , Porcinos
3.
Front Vet Sci ; 2: 76, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26697438

RESUMEN

The peripheral innate immune response to West Nile virus (WNV) is crucial for control of virus spread to the central nervous system. Therefore, transcriptomes encoding the innate immune response proteins against WNV were investigated in peripheral blood mononuclear cells (PBMCs) of New Zealand White rabbits, a recently established novel rabbit model for WNV pathogenesis studies. PBMCs were challenged with an Australian WNV strain, WNVNSW2011, in vitro, and mRNA expression of selected immune response genes were quantified at 2-, 6-, 12-, and 24-h post-infection (pi) using qRT-PCR. Compared to mock-inoculated PBMCs, WNV-stimulated PBMCs expressed high levels of interferon (IFN) alpha (IFNA), gamma (IFNG), IL6, IL12, IL22, CXCL10, and pentraxin 3 (PTX3) mRNA. Likewise, TLR1, 2, 3, 4, 6, and 10 mRNA became up-regulated with the highest expression seen for TLR3, 4, and 6. TLRs-signaling downstream genes (MyD88, STAT1, TRAF3, IRF7, and IRF9) subsequently became up-regulated. The high expression of IFNs, TLR3, TLR4, TRAF3, STAT1, IRF7, and IRF9 are in accordance with antiviral activities, while expression of TNFA, HO1, iNOS, caspase 3, and caspase 9 transcripts suggests the involvement of oxidative stress and apoptosis in WNV-stimulated rabbit PBMCs, respectively. The level of WNVNSW2011 RNA increased at 24-h pi in PBMCs challenged with virus in vitro compared to input virus. The expression dynamics of selected genes were validated in PBMCs from rabbits experimentally infected with WNV in vivo. Higher expression of IFNA, IFN beta (IFNB), IFNG, TNFA, IL6, IL22, PTX3, TLR3 and TLR4, IRF7, IRF9, STST1, TRAF3, caspase 3, and caspase 9 were seen in PBMCs from WNV-infected rabbits on day 3 post-intradermal virus inoculation compared to PBMCs from uninfected control rabbits. This study highlights the array of cytokines and TLRs involved in the host innate immune response to WNV in the rabbit leukocytes and suggests that these cells may be a useful in vitro model for WNV infection study.

4.
Pathogens ; 4(3): 529-58, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26184326

RESUMEN

The economic impact of non-lethal human and equine West Nile virus (WNV) disease is substantial, since it is the most common presentation of the infection. Experimental infection with virulent WNV strains in the mouse and hamster models frequently results in severe neural infection and moderate to high mortality, both of which are not representative features of most human and equine infections. We have established a rabbit model for investigating pathogenesis and immune response of non-lethal WNV infection. Two species of rabbits, New Zealand White (Oryctolagus cuniculus) and North American cottontail (Sylvilagus sp.), were experimentally infected with virulent WNV and Murray Valley encephalitis virus strains. Infected rabbits exhibited a consistently resistant phenotype, with evidence of low viremia, minimal-absent neural infection, mild-moderate neuropathology, and the lack of mortality, even though productive virus replication occurred in the draining lymph node. The kinetics of anti-WNV neutralizing antibody response was comparable to that commonly seen in infected horses and humans. This may be explained by the early IFNα/ß and/or γ response evident in the draining popliteal lymph node. Given this similarity to the human and equine disease, immunocompetent rabbits are, therefore, a valuable animal model for investigating various aspects of non-lethal WNV infections.

5.
Innate Immun ; 21(3): 242-54, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24648487

RESUMEN

Dendritic cell (DC) subsets form a remarkable cellular network that regulate innate and adaptive immune responses. Although pigs are the most approximate model to humans, little is known about the regulation of monocyte-derived DCs (moDCs) and splenic DCs (SDCs) in the initiation of immune responses under inflammatory conditions. We investigated the activation and maturation of porcine moDC and SDC subpopulations following LPS stimulation. Porcine monocytes that would differentiate into moDCs were isolated. SDCs were isolated directly from the porcine spleen. Following LPS stimulation, phagocytosis activity, TLR4/MyD88-dependent gene expression, co-stimulatory molecule, and pro-inflammatory cytokine (TNF-α, IL-1ß) and chemokine (IL-8) expressions were increased in both cell subsets. Furthermore, moDCs showed higher levels of gene and protein expression compared with SDCs. Interestingly, moDCs were found to be more responsive via the TLR4/TRAF-dependent signalling pathway of activation. Only SDCs expressed higher level of IL-12p40 gene and protein, whereas, IFN-γ gene and protein expression were likely to be unchanged after LPS stimulation in both cell subtypes. These data demonstrate that porcine moDCs display a greater ability to initiate innate immune responses, and could be used as a model to investigate immune responses against Ags.


Asunto(s)
Células Dendríticas/inmunología , Monocitos/inmunología , Bazo/inmunología , Inmunidad Adaptativa , Animales , Células Cultivadas , Citocinas/metabolismo , Humanos , Inmunidad Innata , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/inmunología , Factor 88 de Diferenciación Mieloide/metabolismo , Transducción de Señal , Sus scrofa , Receptor Toll-Like 4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...