Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
1.
Cell Prolif ; : e13701, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38946222

RESUMEN

Cutaneous T-cell lymphomas (CTC) are a heterogeneous group of T-cell lymphoproliferative malignancies of the skin with limited treatment options, increased resistance and remission. Metabolic reprogramming is vital in orchestrating the uncontrolled growth and proliferation of cancer cells. Importantly, deregulated signalling plays a significant role in metabolic reprogramming. Considering the crucial role of metabolic reprogramming in cancer-cell growth and proliferation, target identification and the development of novel and multi-targeting agents are imperative. The present study explores the underlying mechanisms and metabolic signalling pathways associated with Glabridin mediated anti-cancer actions in CTCL. Our results show that Glabridin significantly inhibits the growth of CTCL cells through induction of programmed cell death (PCD) such as apoptosis, autophagy and necrosis. Interestingly, results further show that Glabridin induces PCD in CTCL cells by targeting MAPK signalling pathways, particularly the activation of ERK. Further, Glabridin also sensitized CTCL cells to the anti-cancer drug, bortezomib. Importantly, LC-MS-based metabolomics analyses further showed that Glabridin targeted multiple metabolites and metabolic pathways intricately involved in cancer cell growth and proliferation in an ERK-dependent fashion. Overall, our findings revealed that Glabridin induces PCD and attenuates the expression of regulatory proteins and metabolites involved in orchestrating the uncontrolled proliferation of CTCL cells through ERK activation. Therefore, Glabridin possesses important features of an ideal anti-cancer agent.

2.
Pathol Res Pract ; 260: 155465, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39018927

RESUMEN

Fatty acid synthase (FASN) is a critical enzyme essential for the production of fats in the body. The abnormal expression of FASN is associated with different types of malignancies, including ovarian cancer. FASN plays a crucial role in cell growth and survival as a metabolic oncogene, although the specific processes that cause its dysregulation are still unknown. FASN interacts with signaling pathways linked to the progression of cancer. Pharmacologically inhibiting or inactivating the FASN gene has shown potential in causing the death of cancer cells, offering a possible treatment approach. This review examines the function of FASN in ovarian cancer, namely its level of expression, influence on the advancement of the disease, and its potential as a target for therapeutic interventions.

3.
Sci Rep ; 14(1): 15287, 2024 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961106

RESUMEN

Cervical cancer is still the leading cause of cancer mortality worldwide even after introduction of vaccine against Human papillomavirus (HPV), due to low vaccine coverage, especially in the developing world. Cervical cancer is primarily treated by Chemo/Radiotherapy, depending on the disease stage, with Carboplatin/Cisplatin-based drug regime. These drugs being non-specific, target rapidly dividing cells, including normal cells, so safer options are needed for lower off-target toxicity. Natural products offer an attractive option compared to synthetic drugs due to their well-established safety profile and capacity to target multiple oncogenic hallmarks of cancer like inflammation, angiogenesis, etc. In the current study, we investigated the effect of Bergenin (C-glycoside of 4-O-methylgallic acid), a natural polyphenol compound that is isolated from medicinal plants such as Bergenia crassifolia, Caesalpinia digyna, and Flueggea leucopyrus. Bergenin has been shown to have anti-inflammatory, anti-ulcerogenic, and wound healing properties but its anticancer potential has been realized only recently. We performed a proteomic analysis of cervical carcinoma cells treated with bergenin and found it to influence multiple hallmarks of cancers, including apoptosis, angiogenesis, and tumor suppressor proteins. It was also involved in many different cellular processes unrelated to cancer, as shown by our proteomic analysis. Further analysis showed bergenin to be a potent-angiogenic agent by reducing key angiogenic proteins like Galectin 3 and MMP-9 (Matrix Metalloprotease 9) in cervical carcinoma cells. Further understanding of this interaction was carried out using molecular docking analysis, which indicated MMP-9 has more affinity for bergenin as compared to Galectin-3. Cumulatively, our data provide novel insight into the anti-angiogenic mechanism of bergenin in cervical carcinoma cells by modulation of multiple angiogenic proteins like Galectin-3 and MMP-9 which warrant its further development as an anticancer agent in cervical cancer.


Asunto(s)
Benzopiranos , Proliferación Celular , Galectina 3 , Metaloproteinasa 9 de la Matriz , Neoplasias del Cuello Uterino , Humanos , Metaloproteinasa 9 de la Matriz/metabolismo , Benzopiranos/farmacología , Femenino , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Galectina 3/metabolismo , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Galectinas/metabolismo , Galectinas/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Apoptosis/efectos de los fármacos , Células HeLa , Proteínas Sanguíneas
4.
Aging Dis ; 2024 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-38913049

RESUMEN

As human life expectancy continues to rise, becoming a pressing global concern, it brings into focus the underlying mechanisms of aging. The increasing lifespan has led to a growing elderly population grappling with age-related diseases (ARDs), which strains healthcare systems and economies worldwide. While human senescence was once regarded as an immutable and inexorable phenomenon, impervious to interventions, the emerging field of geroscience now offers innovative approaches to aging, holding the promise of extending the period of healthspan in humans. Understanding the intricate links between aging and pathologies is essential in addressing the challenges presented by aging populations. A substantial body of evidence indicates shared mechanisms and pathways contributing to the development and progression of various ARDs. Consequently, novel interventions targeting the intrinsic mechanisms of aging have the potential to delay the onset of diverse pathological conditions, thereby extending healthspan. In this narrative review, we discuss the most promising methods and interventions aimed at modulating aging, which harbor the potential to mitigate ARDs in the future. We also outline the complexity of senescence and review recent empirical evidence to identify rational strategies for promoting healthy aging.

5.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167286, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38866114

RESUMEN

S-phase kinase-associated protein 2 (Skp2) is an F-box protein overexpressed in human cancers and linked with poor prognosis. It triggers cancer pathogenesis, including stemness and drug resistance. In this study, we have explored the potential role of Skp2 targeting in restoring the expression of tumor suppressors in human cutaneous squamous cell carcinoma (cSCC) cells. Our results showed that genetic and pharmacological Skp2 targeting markedly suppressed cSCC cell proliferation, colony growth, spheroid formation, and enhanced sensitization to chemotherapeutic drugs. Further, western blot results demonstrated restoration of tumor suppressor (KLF4) and CDKI (p21) and suppression of vimentin and survivin in Skp2-knocked-down cSCC cells. Importantly, we also explored that Skp2 targeting potentiates apoptosis of cSCC cells through MAPK signaling. Moreover, co-targeting of Skp2 and PI3K/AKT resulted in increased cancer cell death. Interestingly, curcumin, a well-known naturally derived anticancer agent, also inhibits Skp2 expression with concomitant CDKI upregulation. In line, curcumin suppressed cSCC cell growth through ROS-mediated apoptosis, while the use of N-acetyl cysteine (NAC) reversed curcumin-induced cell death. Curcumin treatment also sensitized cSCC cells to conventional anticancer drugs, such as cisplatin and doxorubicin. Altogether, these data suggest that Skp2 targeting restores the functioning of tumor suppressors, inhibits the expression of genes associated with cell proliferation and stemness, and sensitizes cancer cells to anticancer drugs. Thus, genetic, and pharmacological ablation of Skp2 can be an important strategy for attenuating cancer pathogenesis and associated complications in skin squamous cell carcinoma.

6.
Front Aging Neurosci ; 16: 1358141, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38813528

RESUMEN

Parkinson's disease resultant in the degeneration of Dopaminergic neurons and accumulation of α-synuclein in the substantia nigra pars compacta. The synthetic therapeutics for Parkinson's disease have moderate symptomatic benefits but cannot prevent or delay disease progression. In this study, nicotine was employed by using transgenic Caenorhabditis elegans Parkinson's disease models to minimize the Parkinson's disease symptoms. The results showed that the nicotine at 100, 150, and 200 µM doses reduced degeneration of Dopaminergic neurons caused by 6-hydroxydopamine (14, 33, and 40%), lowered the aggregative toxicity of α-synuclein by 53, 56, and 78%, respectively. The reduction in food-sensing behavioral disabilities of BZ555 was observed to be 18, 49, and 86%, respectively, with nicotine concentrations of 100 µM, 150 µM, and 200 µM. Additionally, nicotine was found to enhance Daf-16 nuclear translocation by 14, 31, and 49%, and dose-dependently increased SOD-3 expression by 10, 19, and 23%. In summary, the nicotine might a promising therapy option for Parkinson's disease.

7.
Pharmaceuticals (Basel) ; 17(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38794148

RESUMEN

The growing global burden of malignant tumors with increasing incidence and mortality rates underscores the urgent need for more effective and less toxic therapeutic options. Herbal compounds are being increasingly studied for their potential to meet these needs due to their reduced side effects and significant efficacy. Pristimerin (PS), a triterpenoid from the quinone formamide class derived from the Celastraceae and Hippocrateaceae families, has emerged as a potent anticancer agent. It exhibits broad-spectrum anti-tumor activity across various cancers such as breast, pancreatic, prostate, glioblastoma, colorectal, cervical, and lung cancers. PS modulates several key cellular processes, including apoptosis, autophagy, cell migration and invasion, angiogenesis, and resistance to chemotherapy, targeting crucial signaling pathways such as those involving NF-κB, p53, and STAT3, among others. The main objective of this review is to provide a comprehensive synthesis of the current literature on PS, emphasizing its mechanisms of action and molecular targets with the utmost clarity. It discusses the comparative advantages of PS over current cancer therapies and explores the implications for future research and clinical applications. By delineating the specific pathways and targets affected by PS, this review seeks to offer valuable insights and directions for future research in this field. The information gathered in this review could pave the way for the successful development of PS into a clinically applicable anticancer therapy.

8.
Cell Death Discov ; 10(1): 225, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724504

RESUMEN

Non-melanoma skin cancer (NMSC), encompassing basal and squamous cell carcinoma, is the most prevalent cancer in the United States. While surgical removal remains the conventional therapy with a 95% 5-year cure rate, there is a growing interest in exploring alternative treatment strategies. In this study, we investigated the role of Bortezomib (BTZ), a proteasome inhibitor, in NMSC. Using two NMSC cell lines (A431 and A388), we examined the effects of BTZ treatment. Our results demonstrated that 48 h of BTZ treatment led to downregulating Skp2 expression in both A431 and A388 cells while upregulating p53 expression, specifically in A388 cells. These alterations resulted in impaired cellular growth and caspase-dependent cell death. Silencing Skp2 in A388 cells with siRNA confirmed the upregulation of p53 as a direct target. Furthermore, BTZ treatment increased the Bax to Bcl-2 ratio, promoting mitochondrial permeability and the subsequent release of cytochrome C, thereby activating caspases. We also found that BTZ exerted its antitumor effects by generating reactive oxygen species (ROS), as blocking ROS production significantly reduced BTZ-induced apoptotic cell death. Interestingly, BTZ treatment induced autophagy, which is evident from the increased expression of microtubule-associated proteins nucleoporin p62 and LC-3A/B. In addition to cell lines, we assessed the impact of BTZ in an in vivo setting using Caenorhabditis elegans (C. elegans). Our findings demonstrated that BTZ induced germline apoptosis in worms even at low concentrations. Notably, this increased apoptosis was mediated through the activity of CEP-1, the worm's counterpart to mammalian p53. In summary, our study elucidated the molecular mechanism underlying BTZ-induced apoptosis in NMSC cell lines and C. elegans. By targeting the skp2/p53 axis, inducing mitochondrial permeability, generating ROS, and promoting autophagy, BTZ demonstrates promising anti-cancer activity in NMSC. These findings provide novel insights into potential therapeutic strategies for controlling the unregulated growth of NMSC.

9.
Biomed Pharmacother ; 175: 116663, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38688170

RESUMEN

Cancer is caused by a complex interaction of factors that interrupt the normal growth and division of cells. At the center of this process is the intricate relationship between DNA damage and the cellular mechanisms responsible for maintaining genomic stability. When DNA damage is not repaired, it can cause genetic mutations that contribute to the initiation and progression of cancer. On the other hand, the DNA damage response system, which involves the phosphorylation of the histone variant H2AX (γH2AX), is crucial in preserving genomic integrity by signaling and facilitating the repair of DNA double-strand breaks. This review provides an explanation of the molecular dynamics of H2AX in the context of DNA damage response. It emphasizes the crucial role of H2AX in recruiting and localizing repair machinery at sites of chromatin damage. The review explains how H2AX phosphorylation, facilitated by the master kinases ATM and ATR, acts as a signal for DNA damage, triggering downstream pathways that govern cell cycle checkpoints, apoptosis, and the cellular fate decision between repair and cell death. The phosphorylation of H2AX is a critical regulatory point, ensuring cell survival by promoting repair or steering cells towards apoptosis in cases of catastrophic genomic damage. Moreover, we explore the therapeutic potential of targeting H2AX in cancer treatment, leveraging its dual function as a biomarker of DNA integrity and a therapeutic target. By delineating the pathways that lead to H2AX phosphorylation and its roles in apoptosis and cell cycle control, we highlight the significance of H2AX as both a prognostic tool and a focal point for therapeutic intervention, offering insights into its utility in enhancing the efficacy of cancer treatments.


Asunto(s)
Daño del ADN , Reparación del ADN , Histonas , Neoplasias , Humanos , Histonas/metabolismo , Neoplasias/genética , Neoplasias/patología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Animales , Fosforilación , Transducción de Señal , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Terapia Molecular Dirigida
10.
Cell Mol Biol Lett ; 29(1): 33, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448800

RESUMEN

Gut microbiota regulates various aspects of human physiology by producing metabolites, metabolizing enzymes, and toxins. Many studies have linked microbiota with human health and altered microbiome configurations with the occurrence of several diseases, including cancer. Accumulating evidence suggests that the microbiome can influence the initiation and progression of several cancers. Moreover, some microbiotas of the gut and oral cavity have been reported to infect tumors, initiate metastasis, and promote the spread of cancer to distant organs, thereby influencing the clinical outcome of cancer patients. The gut microbiome has recently been reported to interact with environmental factors such as diet and exposure to environmental toxicants. Exposure to environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs) induces a shift in the gut microbiome metabolic pathways, favoring a proinflammatory microenvironment. In addition, other studies have also correlated cancer incidence with exposure to PAHs. PAHs are known to induce organ carcinogenesis through activating a ligand-activated transcriptional factor termed the aryl hydrocarbon receptor (AhR), which metabolizes PAHs to highly reactive carcinogenic intermediates. However, the crosstalk between AhR and the microbiome in mediating carcinogenesis is poorly reviewed. This review aims to discuss the role of exposure to environmental pollutants and activation of AhR on microbiome-associated cancer progression and explore the underlying molecular mechanisms involved in cancer development.


Asunto(s)
Contaminantes Ambientales , Microbiota , Neoplasias , Humanos , Receptores de Hidrocarburo de Aril , Carcinogénesis , Microambiente Tumoral
11.
Semin Cancer Biol ; 100: 1-16, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38503384

RESUMEN

Transcription factors (TFs) are essential in controlling gene regulatory networks that determine cellular fate during embryogenesis and tumor development. TFs are the major players in promoting cancer stemness by regulating the function of cancer stem cells (CSCs). Understanding how TFs interact with their downstream targets for determining cell fate during embryogenesis and tumor development is a critical area of research. CSCs are increasingly recognized for their significance in tumorigenesis and patient prognosis, as they play a significant role in cancer initiation, progression, metastasis, and treatment resistance. However, traditional therapies have limited effectiveness in eliminating this subset of cells, allowing CSCs to persist and potentially form secondary tumors. Recent studies have revealed that cancer cells and tumors with CSC-like features also exhibit genes related to the epithelial-to-mesenchymal transition (EMT). EMT-associated transcription factors (EMT-TFs) like TWIST and Snail/Slug can upregulate EMT-related genes and reprogram cancer cells into a stem-like phenotype. Importantly, the regulation of EMT-TFs, particularly through post-translational modifications (PTMs), plays a significant role in cancer metastasis and the acquisition of stem cell-like features. PTMs, including phosphorylation, ubiquitination, and SUMOylation, can alter the stability, localization, and activity of EMT-TFs, thereby modulating their ability to drive EMT and stemness properties in cancer cells. Although targeting EMT-TFs holds potential in tackling CSCs, current pharmacological approaches to do so directly are unavailable. Therefore, this review aims to explore the role of EMT- and CSC-TFs, their connection and impact in cellular development and cancer, emphasizing the potential of TF networks as targets for therapeutic intervention.


Asunto(s)
Neoplasias , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Neoplasias/genética , Neoplasias/terapia , Transición Epitelial-Mesenquimal/genética , Diferenciación Celular , Células Madre Neoplásicas/patología , Línea Celular Tumoral
12.
Exp Brain Res ; 242(4): 971-986, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38430248

RESUMEN

The gradual nature of age-related neurodegeneration causes Parkinson's disease (PD) and impairs movement, memory, intellectual ability, and social interaction. One of the most prevalent neurodegenerative conditions affecting the central nervous system (CNS) among the elderly is PD. PD affects both motor and cognitive functions. Degeneration of dopaminergic (DA) neurons and buildup of the protein α-synuclein (α-Syn) in the substantia nigra pars compacta (SNpc) are two major causes of this disorder. Both UPS and ALS systems serve to eliminate α-Syn. Autophagy and UPS deficits, shortened life duration, and lipofuscin buildup accelerate PD. This sickness has no cure. Innovative therapies are halting PD progression. Bioactive phytochemicals may provide older individuals with a natural substitute to help delay the onset of neurodegenerative illnesses. This study examines whether nicotine helps transgenic C. elegans PD models. According to numerous studies, nicotine enhances synaptic plasticity and dopaminergic neuronal survival. Upgrades UPS pathways, increases autophagy, and decreases oxidative stress and mitochondrial dysfunction. At 100, 150, and 200 µM nicotine levels, worms showed reduced α-Syn aggregation, repaired DA neurotoxicity after 6-OHDA intoxication, increased lifetime, and reduced lipofuscin accumulation. Furthermore, nicotine triggered autophagy and UPS. We revealed nicotine's potential as a UPS and autophagy activator to prevent PD and other neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Animales , Humanos , Anciano , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Nicotina/farmacología , Nicotina/metabolismo , Caenorhabditis elegans/metabolismo , Lipofuscina/metabolismo , Lipofuscina/farmacología , alfa-Sinucleína/metabolismo , alfa-Sinucleína/farmacología , Enfermedades Neurodegenerativas/metabolismo , Neuronas Dopaminérgicas/metabolismo , Autofagia
13.
Front Pharmacol ; 15: 1352907, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38434705

RESUMEN

In the current study, Neosetophomone B (NSP-B) was investigated for its anti-cancerous potential using network pharmacology, quantum polarized ligand docking, molecular simulation, and binding free energy calculation. Using SwissTarget prediction, and Superpred, the molecular targets for NSP-B were predicted while cancer-associated genes were obtained from DisGeNet. Among the total predicted proteins, only 25 were reported to overlap with the disease-associated genes. A protein-protein interaction network was constructed by using Cytoscape and STRING databases. MCODE was used to detect the densely connected subnetworks which revealed three sub-clusters. Cytohubba predicted four targets, i.e., fibroblast growth factor , FGF20, FGF22, and FGF23 as hub genes. Molecular docking of NSP-B based on a quantum-polarized docking approach with FGF6, FGF20, FGF22, and FGF23 revealed stronger interactions with the key hotspot residues. Moreover, molecular simulation revealed a stable dynamic behavior, good structural packing, and residues' flexibility of each complex. Hydrogen bonding in each complex was also observed to be above the minimum. In addition, the binding free energy was calculated using the MM/GBSA (Molecular Mechanics/Generalized Born Surface Area) and MM/PBSA (Molecular Mechanics/Poisson-Boltzmann Surface Area) approaches. The total binding free energy calculated using the MM/GBSA approach revealed values of -36.85 kcal/mol for the FGF6-NSP-B complex, -43.87 kcal/mol for the FGF20-NSP-B complex, and -37.42 kcal/mol for the FGF22-NSP-B complex, and -41.91 kcal/mol for the FGF23-NSP-B complex. The total binding free energy calculated using the MM/PBSA approach showed values of -30.05 kcal/mol for the FGF6-NSP-B complex, -39.62 kcal/mol for the FGF20-NSP-B complex, -34.89 kcal/mol for the FGF22-NSP-B complex, and -37.18 kcal/mol for the FGF23-NSP-B complex. These findings underscore the promising potential of NSP-B against FGF6, FGF20, FGF22, and FGF23, which are reported to be essential for cancer signaling. These results significantly bolster the potential of NSP-B as a promising candidate for cancer therapy.

14.
Biotechnol J ; 19(3): e2300502, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38479996

RESUMEN

The anti-inflammatory effect of α-melanocyte-stimulating hormone (α-MSH) in the central nervous system (CNS) has been reported for 40 years. However, the short half-life of α-MSH limits its clinical applications. The previous study has shown that a fusion protein comprising protein transduction domain (PTD), human serum albumin (HSA), and α-MSH extends the half-life of α-MSH, but its anti-inflammatory effect is not satisfactory. In this study, optimization of the structures of fusion proteins was attempted by changing the linker peptide between HSA and α-MSH. The optimization resulted in the improvement of various important characteristics, especially the stability and anti-inflammatory bioactivity, which are important features in protein medicines. Compared to the original linker peptide L0, the 5-amino-acid rigid linker peptide L6 (PAPAP) is the best option for further investigation due to its higher expression (increased by 6.27%), improved purification recovery (increased by 60.8%), excellent thermal stability (Tm = 83.5°C) and better inhibition in NF-κB expression (increased by 81.5%). From this study, the significance of the design of linker peptides in the study of structure-activity relationship of fusion proteins was proved.


Asunto(s)
Albúmina Sérica Humana , alfa-MSH , Humanos , alfa-MSH/farmacología , FN-kappa B/metabolismo , Antiinflamatorios/farmacología
15.
Cancer Metastasis Rev ; 43(1): 197-228, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38329598

RESUMEN

Cancer is a complex disease displaying a variety of cell states and phenotypes. This diversity, known as cancer cell plasticity, confers cancer cells the ability to change in response to their environment, leading to increased tumor diversity and drug resistance. This review explores the intricate landscape of cancer cell plasticity, offering a deep dive into the cellular, molecular, and genetic mechanisms that underlie this phenomenon. Cancer cell plasticity is intertwined with processes such as epithelial-mesenchymal transition and the acquisition of stem cell-like features. These processes are pivotal in the development and progression of tumors, contributing to the multifaceted nature of cancer and the challenges associated with its treatment. Despite significant advancements in targeted therapies, cancer cell adaptability and subsequent therapy-induced resistance remain persistent obstacles in achieving consistent, successful cancer treatment outcomes. Our review delves into the array of mechanisms cancer cells exploit to maintain plasticity, including epigenetic modifications, alterations in signaling pathways, and environmental interactions. We discuss strategies to counteract cancer cell plasticity, such as targeting specific cellular pathways and employing combination therapies. These strategies promise to enhance the efficacy of cancer treatments and mitigate therapy resistance. In conclusion, this review offers a holistic, detailed exploration of cancer cell plasticity, aiming to bolster the understanding and approach toward tackling the challenges posed by tumor heterogeneity and drug resistance. As articulated in this review, the delineation of cellular, molecular, and genetic mechanisms underlying tumor heterogeneity and drug resistance seeks to contribute substantially to the progress in cancer therapeutics and the advancement of precision medicine, ultimately enhancing the prospects for effective cancer treatment and patient outcomes.


Asunto(s)
Plasticidad de la Célula , Neoplasias , Humanos , Plasticidad de la Célula/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Resistencia a Antineoplásicos/genética , Transición Epitelial-Mesenquimal/genética , Transducción de Señal
16.
Curr Opin Hematol ; 31(3): 89-95, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38335037

RESUMEN

PURPOSE OF REVIEW: Cytokine-mediated signaling pathways, including JAK/STAT, PI3K/AKT, and Ras/MAPK pathways, play an important role in the process of erythropoiesis. These pathways are involved in the survival, proliferation, and differentiation function of erythropoiesis. RECENT FINDINGS: The JAK/STAT pathway controls erythroid progenitor differentiation, proliferation, and survival. The PI3K/AKT signaling cascade facilitates erythroid progenitor survival, proliferation, and final differentiation. During erythroid maturation, MAPK, triggered by EPO, suppresses myeloid genes, while PI3K is essential for differentiation. Pro-inflammatory cytokines activate signaling pathways that can alter erythropoiesis like EPOR-triggered signaling, including survival, differentiation, and proliferation. SUMMARY: A comprehensive understanding of signaling networks is crucial for the formulation of treatment approaches for hematologic disorders. Further investigation is required to fully understand the mechanisms and interactions of these signaling pathways in erythropoiesis.


Asunto(s)
Eritropoyesis , Transducción de Señal , Humanos , Transducción de Señal/fisiología , Eritropoyesis/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinasas Janus , Fosfatidilinositol 3-Quinasas/metabolismo , Factores de Transcripción STAT/metabolismo , Diferenciación Celular
17.
J Proteomics ; 295: 105108, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38316181

RESUMEN

Gynecological malignancies pose a severe threat to female lives. Ovarian cancer (OC), the most lethal gynecological malignancy, is clinically presented with chemoresistance and a higher relapse rate. Several studies have highly correlated the incidence of OC to exposure to environmental pollutants, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a process mainly mediated through activating the aryl hydrocarbon receptor (AhR). We have previously reported that exposure of OC cells to TCDD, an AhR activator, significantly modulated the expression of several genes that play roles in stemness and chemoresistance. However, the effect of AhR activation on the whole OC cell proteome aiming at identifying novel druggable targets for both prevention and treatment intervention purposes remains unrevealed. For this purpose, we conducted a comparative proteomic analysis of OC cells A2780 untreated/treated with TCDD for 24 h using a mass spectrometry-based label-free shotgun proteomics approach. The most significantly dysregulated proteins were validated by Western blot analysis. Our results showed that upon AhR activation by TCDD, out of 2598 proteins identified, 795 proteins were upregulated, and 611 were downregulated. STRING interaction analysis and KEGG-Reactome pathway analysis approaches identified several significantly dysregulated proteins that were categorized to be involved in chemoresistance, cancer progression, invasion and metastasis, apoptosis, survival, and prognosis in OC. Importantly, selected dysregulated genes identified by the proteomic study were validated at the protein expression levels by Western blot analysis. In conclusion, this study provides a better understanding of the the cross-talk between AhR and several other molecular signaling pathways and the role and involvement of AhR in ovarian carcinogenesis and chemoresistance. Moreover, the study suggests that AhR is a potential therapeutic target for OC prevention and maintenance. SIGNIFICANCE: To our knowledge, this is the first study that investigates the role and involvement of AhR and its regulated genes in OC by performing a comparative proteomic analysis to identify the critical proteins with a modulated expression upon AhR activation. We found AhR activation to play a tumor-promoting and chemoresistance-inducing role in the pathogenesis of OC. The results of our study help to devise novel therapeutics for better management and prevention and open the doors to finding novel biomarkers for the early detection and prognosis of OC.


Asunto(s)
Neoplasias Ováricas , Dibenzodioxinas Policloradas , Receptores de Hidrocarburo de Aril , Femenino , Humanos , Carcinogénesis , Línea Celular Tumoral , Resistencia a Antineoplásicos , Neoplasias Ováricas/genética , Dibenzodioxinas Policloradas/toxicidad , Proteómica , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo
18.
Neuropeptides ; 104: 102410, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38308948

RESUMEN

The immunomodulatory effects of α-melanocyte stimulating hormone (α-MSH) in the central nervous system (CNS) have been investigated for forty years. The clinical applications of α-MSH are limited due to its short half-life. Our previous study has indicated that the short half-life of α-MSH can be extended by fusion with carrier human serum albumin (HSA) and this fusion protein has also retained the anti-inflammatory effect on the CNS. This improvement is still far from the clinical requirements. Thus, we expected to enhance the half-life and activity of the fusion protein by optimizing the linker peptide to get closer to clinical requirements. In a previous study, we screened out two candidates in vitro experiments with a flexible linker peptide (fusion protein with flexible linker peptide, FPFL) and a rigid linker peptide (fusion protein with rigid linker peptide, FPRL), respectively. However, it was not sure whether the anti-inflammatory effects in vitro could be reproduced in vivo. Our results show that FPRL is the best candidate with a longer half-life compared to the traditional flexible linker peptides. Meanwhile, the ability of FPRL to penetrate the blood-brain barrier (BBB) was enhanced, and the inhibition of TNF-α and IL-6 was improved. We also found that the toxicity of FPRL was decreased. All of the results suggested that trying to choose the rigid linker peptide in some fusion proteins may be a potential choice for improving the unsatisfactory characteristics.


Asunto(s)
Albúmina Sérica Humana , alfa-MSH , Animales , Humanos , Ratones , alfa-MSH/farmacología , Antiinflamatorios/farmacología , Barrera Hematoencefálica , Factor de Necrosis Tumoral alfa
19.
Pathol Res Pract ; 254: 155174, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38306863

RESUMEN

Breast cancer remains a major global health challenge. Its rising incidence is attributed to factors such as delayed diagnosis, the complexity of its subtypes, and increasing drug resistance, all contributing to less-than-ideal patient outcomes. Central to the progression of breast cancer are epigenetic aberrations, which significantly contribute to drug resistance and the emergence of cancer stem cell traits. These include alterations in DNA methylation, histone modifications, and the expression of non-coding RNAs. Understanding these epigenetic changes is crucial for developing advanced breast cancer management strategies despite their complexity. Investigating these epigenetic modifications offers the potential for novel diagnostic markers, more accurate prognostic indicators, and the identification of reliable predictors of treatment response. This could lead to the development of new targeted therapies. However, this requires sustained, focused research efforts to navigate the challenges of understanding breast cancer carcinogenesis and its epigenetic underpinnings. A deeper understanding of epigenetic mechanisms in breast cancer can revolutionize personalized medicine. This could lead to significant improvements in patient care, including early detection, precise disease stratification, and more effective treatment options.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Metilación de ADN/genética , Epigénesis Genética , Carcinogénesis/genética , Epigenómica
20.
Artículo en Inglés | MEDLINE | ID: mdl-38265390

RESUMEN

Since the authors are not responding to the editor's requests to fulfill the editorial requirement, therefore, the article has been withdrawn from the website of the journal Current Stem Cell Research & Therapy.Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused.The Bentham editorial policy on article withdrawal can be found at https://benthamscience.com/pages/editorialpolicies-main BENTHAM SCIENCE DISCLAIMER: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript, the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...