Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Med Phys ; 49(1): 56-63, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828070

RESUMEN

Background: Volumetric-modulated arc therapy (VMAT) is an efficient method of administering intensity-modulated radiotherapy beams. The Delta4 device was employed to examine patient data. Aims and Objectives: The utility of the Delta4 device in identifying errors for patient-specific quality assurance of VMAT plans was studied in this research. Materials and Methods: Intentional errors were purposely created in the collimator rotation, gantry rotation, multileaf collimator (MLC) position displacement, and increase in the number of monitor units (MU). Results: The results show that when the characteristics of the treatment plans were changed, the gamma passing rate (GPR) decreased. The largest percentage of erroneous detection was seen in the increasing number of MU, with a GPR ranging from 41 to 92. Gamma analysis was used to compare the dose distributions of the original and intentional error designs using the 2%/2 mm criteria. The percentage of dose errors (DEs) in the dose-volume histogram (DVH) was also analyzed, and the statistical association was assessed using logistic regression. A modest association (Pearson's R-values: 0.12-0.67) was seen between the DE and GPR in all intentional plans. The findings indicated a moderate association between DVH and GPR. The data reveal that Delta4 is effective in detecting mistakes in treatment regimens for head-and-neck cancer as well as lung cancer. Conclusion: The study results also imply that Delta4 can detect errors in VMAT plans, depending on the details of the defects and the treatment plans employed.

2.
Phys Med ; 101: 129-136, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35998433

RESUMEN

The purpose of this study is to develop an approach for automating quality assurance (QA) analysis for a six-degree-of-freedom (6DOF) couch using image displacement and an accelerometer sensor. A cubic phantom was fabricated using 3D printing and the accelerometer sensor was embedded in the phantom to measure the couch in the pitch and roll directions. The accuracy and reliability of image displacement and the accelerometer sensor were investigated prior to their practical use for 6DOF couch QA. Image displacement performance had an accuracy and reliability of 0.026 ± 0.026 mm for the translation direction and 0.021 ± 0.016° for the rotation direction. Accelerometer sensor performance had an accuracy and reliability of 0.023 ± 0.018° for pitch rotation and 0.051 ± 0.024° for roll rotation. Automating QA analysis was used to perform 6DOF couch QA, and the couch position errors measured using image displacement were less than 0.99 mm, 0.91 mm, 0.82 mm for the vertical, longitudinal, lateral translation in range between ±20 mm, and 0.07°, 0.23°, and 0.2° for pitch, roll, and yaw rotation in range between ±3° whereas the couch position errors measured using the accelerometer sensor were less than 0.1° and 0.19° for the pitch and roll rotation in range between ±3°.


Asunto(s)
Radiocirugia , Radioterapia Guiada por Imagen , Acelerometría , Humanos , Posicionamiento del Paciente/métodos , Radiocirugia/métodos , Radioterapia Guiada por Imagen/métodos , Reproducibilidad de los Resultados , Rotación
3.
Life (Basel) ; 11(11)2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34833035

RESUMEN

The study's purpose was to develop and validate Electronic Portal Imaging Device (EPID)-based dosimetry for Stereotactic Radiosurgery (SRS) and Stereotactic Radiation Therapy (SRT) patient-specific Quality Assurance (QA). The co-operation between extended Source-to-Imager Distance (SID) to reduce the saturation effect and simplify the EPID-based dosimetry model was used to perform patient-specific QA in SRS and SRT plans. The four parameters were included for converting the image to dose at depth 10 cm; dose-response linearity with MU, beam profile correction, collimator scatter and water kernel. The model accuracy was validated with 10 SRS/SRT plans. The traditional diode arrays with MapCHECK were also used to perform patient-specific QA for assuring model accuracy. The 150 cm-SID was found a possibility to reduce the saturation effect. The result of model accuracy was found good agreement between our EPID-based dosimetry and TPS calculation with GPR more than 98% for gamma criteria of 3%/3 mm, more than 95% for gamma criteria of 2%/2 mm, and the results related to the measurement with MapCHECK. This study demonstrated the method to perform SRT and SRT patient-specific QA using EPID-based dosimetry in the FFF beam by co-operating between the extended SID that can reduce the saturation effect and estimate the planar dose distribution with the in-house model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA