Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Appl ; 31(5): e02337, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33780061

RESUMEN

Poaching is a global problem causing the decline of species worldwide. Optimizing the efficiency of ranger patrols to deter poaching activity at the lowest possible cost is crucial for protecting species with limited resources. We applied decision analysis and spatial optimization algorithms to allocate efforts of ranger patrols throughout a national park. Our objective was to mitigate poaching activity at or below management risk targets for the lowest monetary cost. We examined this trade-off by constructing a Pareto efficiency frontier using integer linear programming. We used data from a ranger-based monitoring program in Nyungwe National Park, Rwanda. Our measure of poaching risk is based on dynamic occupancy models that account for imperfect detection of poaching activities. We found that in order to achieve a 5% reduction in poaching risk, 622 ranger patrol events (each corresponding to patrolling 1-km2 sites) were needed within a year at a cost of US$49,760. In order to attain a 60% reduction in poaching risk, 15,560 patrol events were needed at a cost of US$1,244,800. We evaluated the trade-off between patrol cost and poaching risk based on our model by constructing a Pareto efficiency frontier and park managers found the solution for a 50% risk reduction to be a practical trade-off based on funding constraints (comparable to recent years) and the diminishing returns between risk mitigation and cost. This expected reduction in risk required 8,558 patrol events per year at a cost of US$684,640. Our results suggest that optimal solutions could increase efficiency compared to the actual effort allocations from 2006 to 2016 in Nyungwe National Park (e.g., risk reductions of ~30% under recent budgets compared to ~50% reduction in risk under the optimal strategy). The modeling framework in this study took into account imperfect detection of poaching risk as well as the directional and conditional nature of ranger patrol events given the spatial adjacency relationships of neighboring sites and access points. Our analyses can help to improve the efficiency of ranger patrols, and the modeling framework can be broadly applied to other spatial conservation planning problems with conditional, multilevel, site selection.


Asunto(s)
Conservación de los Recursos Naturales , Aplicación de la Ley , Parques Recreativos
2.
Ecol Appl ; 29(7): e01962, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31243844

RESUMEN

Climate change and urban growth impact habitats, species, and ecosystem services. To buffer against global change, an established adaptation strategy is designing protected areas to increase representation and complementarity of biodiversity features. Uncertainty regarding the scale and magnitude of landscape change complicates reserve planning and exposes decision makers to the risk of failing to meet conservation goals. Conservation planning tends to treat risk as an absolute measure, ignoring the context of the management problem and risk preferences of stakeholders. Application of risk management theory to conservation emphasizes the diversification of a portfolio of assets, with the goal of reducing the impact of system volatility on investment return. We use principles of Modern Portfolio Theory (MPT), which quantifies risk as the variance and correlation among assets, to formalize diversification as an explicit strategy for managing risk in climate-driven reserve design. We extend MPT to specify a framework that evaluates multiple conservation objectives, allows decision makers to balance management benefits and risk when preferences are contested or unknown, and includes additional decision options such as parcel divestment when evaluating candidate reserve designs. We apply an efficient search algorithm that optimizes portfolio design for large conservation problems and a game theoretic approach to evaluate portfolio trade-offs that satisfy decision makers with divergent benefit and risk tolerances, or when a single decision maker cannot resolve their own preferences. Evaluating several risk profiles for a case study in South Carolina, our results suggest that a reserve design may be somewhat robust to differences in risk attitude but that budgets will likely be important determinants of conservation planning strategies, particularly when divestment is considered a viable alternative. We identify a possible fiscal threshold where adequate resources allow protecting a sufficiently diverse portfolio of habitats such that the risk of failing to achieve conservation objectives is considerably lower. For a range of sea-level rise projections, conversion of habitat to open water (14-180%) and wetland loss (1-7%) are unable to be compensated under the current protected network. In contrast, optimal reserve design outcomes are predicted to ameliorate expected losses relative to current and future habitat protected under the existing conservation estate.


Asunto(s)
Cambio Climático , Ecosistema , Biodiversidad , Conservación de los Recursos Naturales , Incertidumbre
3.
Proc Natl Acad Sci U S A ; 115(34): 8591-8596, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30082379

RESUMEN

Movement is important for ecological and evolutionary theory as well as connectivity conservation, which is increasingly critical for species responding to environmental change. Key ecological and evolutionary outcomes of movement, such as population growth and gene flow, require effective dispersal: movement that is followed by successful reproduction. However, the relative roles of movement and postmovement reproduction for effective dispersal and connectivity remain unclear. Here we isolate the contributions of movement and immigrant reproduction to effective dispersal and connectivity across the entire breeding range of an endangered raptor, the snail kite (Rostrhamus sociabilis plumbeus). To do so, we unite mark-resight data on movement and reproduction across 9 years and 27 breeding patches with an integrated model that decomposes effective dispersal into its hierarchical levels of movement, postmovement breeding attempt, and postmovement reproductive success. We found that immigrant reproduction limits effective dispersal more than movement for this endangered species, demonstrating that even highly mobile species may have limited effective connectivity due to reduced immigrant reproduction. We found different environmental limitations for the reproductive component of effective dispersal compared with movement, indicating that different conservation strategies may be needed when promoting effective dispersal rather than movement alone. We also demonstrate that considering immigrant reproduction, rather than movement alone, alters which patches are the most essential for connectivity, thereby changing conservation priorities. These results challenge the assumption that understanding movement alone is sufficient to infer connectivity and highlight that connectivity conservation may require not only fostering movement but also successful reproduction of immigrants.


Asunto(s)
Migración Animal/fisiología , Especies en Peligro de Extinción , Falconiformes/fisiología , Modelos Biológicos , Reproducción/fisiología , Animales , Femenino , Masculino
4.
PLoS One ; 12(12): e0189228, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29236740

RESUMEN

The Asian citrus psyllid, Diaphorina citri, vectors huanglongbing (HLB), the most serious disease affecting citrus globally. D. citri and HLB have spread to the major citrus growing regions of North America causing billions of dollars of damage in Florida alone. The visual behavior of D. citri is not well characterized and more knowledge is needed to improve attractive traps for monitoring and control of the D. citri. Bioassays were conducted to evaluate attraction to light transmitted through different colored filters. The addition of ultra-violet light (< 400 nm) enhanced attraction of D. citri to transparent visual targets made of green or yellow filters. However, attraction to blue targets was unaffected by UV light. This is the first study to demonstrate a phytophagous insect responding to a hue that is a combination of long and short wavelengths. Further testing is needed to determine how D. citri uses such discriminatory powers in the field. Our results further imply that D. citri utilize color vision, as the less intense yellow and green hues were chosen over white light. In summary, this research provides an increased understanding of D. citri visual behavior and can be used for the development of a more attractive D. citri trap than those currently available.


Asunto(s)
Conducta Animal , Citrus/microbiología , Hemípteros/fisiología , Rayos Ultravioleta , Animales , Bioensayo
5.
Insects ; 8(3)2017 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-28825636

RESUMEN

The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is a primary pest of citrus due to its status as a vector of the citrus disease, huanglongbing. We evaluated the effects of light of specific wavelength and polarization on phototactic behavior of D. citri using a horizontal bioassay arena. Wavelength-associated positive phototaxis was associated with short wavelength UV (350-405 nm) targets whereas little or no responses were seen in longer wavelength targets in the visible spectrum from green to orange (500-620 nm). Distance walked towards the visual target was greater for UV/blue wavelengths (350-430 nm) than for longer wavelengths. Distances walked towards 365 nm light were greater than to white light, and distances travelled to green, yellow and orange light were similar to those in darkness. A reduced light intensity decreased responses to white and UV (365 nm) light. Polarized light was discriminated and D. citri travelled greater distance in response to white vertically polarized light than to horizontally polarized or unpolarized light of equal intensity. Responses to polarized 405 nm light were greater than to unpolarized light, although without an effect of polarization plane. For 500 nm light, there was no difference between responses to polarized or unpolarized light. There was no effect of age on responses to 405 nm light although 1 day old psyllids travelled faster in the presence of 500 nm green compared to 4-7 day old psyllids. Movement in response to UV and relative stasis in response to longer wavelength light is consistent with observed behaviors of settling on foliage for feeding and dispersing out of the canopy when flush needed for reproduction is scarce.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA