Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 109(2): L023002, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38491645

RESUMEN

Controlling environmental effects in surface plasticity/fracture of metals is of interest for areas as diverse as manufacturing processes, product performance, and structural safety. The key to controlling these effects is understanding the effect of adsorbates on surface energy (γ) and surface stress (f). While γ has been well studied, the role of surface stress has received much less attention. We characterize surface stress induced in metals by adsorption of organic monolayers. Linear alkanoic acids of varying chain length (3-18) are deposited by molecular self-assembly onto one side of an aluminum cantilever, several centimeters in length. The surface stress is estimated from in situ measurement of the cantilever deflection. We find that the organic adsorbates induce large surface stress of -4 to +30N/m. Furthermore, we show that f may be tuned by varying adsorbate-molecule chain length. The stress data explain beneficial embrittlement of metal surfaces by organic adsorbates in cutting and comminution processes, and point to a critical role, hitherto ignored, for f in environment assisted cracking (EAC) phenomena. Our results suggest opportunities for utilizing controlled environment-assisted fracture as an aid-fracture as a friend-to enhance material removal processes, apart from using surface stress itself as an experimental probe to explore various manifestations of EAC.

2.
J R Soc Interface ; 18(185): 20210483, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34847794

RESUMEN

Diffusion of water into plant materials is known to decrease their mechanical strength and stiffness but improve formability. Here, we characterize water diffusion through areca palm leaf-sheath-a model plant material, with hierarchical structure, used in eco-friendly foodware. The diffusion process is studied using mass gain measurements and in situ imaging of water transport. By treating the areca sheath as homogeneous ensemble, and incorporating effects of material swelling due- to water absorption, a factor typically neglected in prior studies, the diffusion coefficient Dw for water is estimated as (6.5 ± 2.2) × 10-4 mm2 s-1. It is shown that neglecting the swelling results in gross underestimation of Dw. Microstructural effects (e.g. fibre, matrix) on the diffusion are characterized using in situ imaging of the water transport at high resolution. The observations show that the water diffuses an order of magnitude faster in the matrix (8.63 × 10-4 mm2 s-1) than in the fibres (7.19 × 10-5 mm2 s-1). This non-uniformity is also reflected in the swelling-induced strain in the leaf, mapped by image correlation. Lastly, we vary salt concentration by controlled additions of NaCl and note a non-monotonic dependence of the diffusion on concentration. Implications of the results for improving foodware manufacturing processes and product life are discussed.


Asunto(s)
Hojas de la Planta , Agua , Transporte Biológico , Difusión , Cloruro de Sodio
3.
Nano Lett ; 21(22): 9502-9508, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34726060

RESUMEN

Environment-assisted fracture phenomena in metals are usually associated with surface energy reduction due to an adsorbed film. Here we demonstrate a unique embrittlement effect in Al that is instead mediated by surface stress, induced by an adsorbed organic monolayer. Atomistic simulations show that the adsorbate carbon-chain length lc controls the surface stress via van der Waals forces, being compressive for lc < 8 and tensile otherwise. For lc > 8, we demonstrate experimentally that the nanoscale film causes a ductile-to-brittle transition on the macroscale. Concomitant with this transition is a nearly 85% reduction in deformation forces. Additional simulations reveal that the microscopic mechanism for the embrittlement is via suppression of dislocation emission at incipient crack-tips. In addition to challenging long-held views on environment-assisted fracture, our findings pertaining to surface-stress induced embrittlement suggest profitable utility in manufacturing processes such as machining and comminution.

4.
Sci Adv ; 6(51)2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33328232

RESUMEN

Adsorbed films often influence mechanical behavior of surfaces, leading to well-known mechanochemical phenomena such as liquid metal embrittlement and environment-assisted cracking. Here, we demonstrate a mechanochemical phenomenon wherein adsorbed long-chain organic monolayers disrupt large-strain plastic deformation in metals. Using high-speed in situ imaging and post facto analysis, we show that the monolayers induce a ductile-to-brittle transition. Sinuous flow, characteristic of ductile metals, gives way to quasi-periodic fracture, typical of brittle materials, with 85% reduction in deformation forces. By independently varying surface energy and molecule chain length via molecular self-assembly, we argue that this "embrittlement" is driven by adsorbate-induced surface stress, as against surface energy reduction. Our observations, backed by modeling and molecular simulations, could provide a basis for explaining diverse mechanochemical phenomena in solids. The results also have implications for manufacturing processes such as machining and comminution, and wear.

5.
Proc Math Phys Eng Sci ; 473(2202): 20160863, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28690406

RESUMEN

The cutting of metals has long been described as occurring by laminar plastic flow. Here we show that for metals with large strain-hardening capacity, laminar flow mode is unstable and cutting instead occurs by plastic buckling of a thin surface layer. High speed in situ imaging confirms that the buckling results in a small bump on the surface which then evolves into a fold of large amplitude by rotation and stretching. The repeated occurrence of buckling and folding manifests itself at the mesoscopic scale as a new flow mode with significant vortex-like components-sinuous flow. The buckling model is validated by phenomenological observations of flow at the continuum level and microstructural characteristics of grain deformation and measurements of the folding. In addition to predicting the conditions for surface buckling, the model suggests various geometric flow control strategies that can be effectively implemented to promote laminar flow, and suppress sinuous flow in cutting, with implications for industrial manufacturing processes. The observations impinge on the foundations of metal cutting by pointing to the key role of stability of laminar flow in determining the mechanism of material removal, and the need to re-examine long-held notions of large strain deformation at surfaces.

6.
Proc Math Phys Eng Sci ; 472(2190): 20160134, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27436981

RESUMEN

Often during phase growth, the rate of accretion, on the one hand, is determined by a competition between bulk diffusion and surface reaction rate. The morphology of the phase interface, on the other hand, is determined by an interplay between surface diffusivity and surface reaction rate. In this study, a framework to predict the growth and the morphology of an interface by modelling the interplay between bulk diffusion, surface reaction rate and surface diffusion is developed. The framework is demonstrated using the example of Cu-Sn intermetallic compound growth that is of significance to modern microelectronic assemblies. In particular, the dynamics and stability of the interface created when Cu and Sn react to form the compound Cu6Sn5 is explored. Prior experimental observations of the Cu6Sn5-Sn interface have shown it to possess either a scalloped, flat or needle-shaped morphology. Diffuse interface simulations are carried out to elucidate the mechanism behind the interface formation. The computational model accounts for the bulk diffusion of Cu through the intermetallic compound, reaction at the interface to form Cu6Sn5, surface diffusion of Cu6Sn5 along the interface and the influence of the electric current density in accelerating the bulk diffusion of Cu. A stability analysis is performed to identify the conditions under which the interface evolves into a flat, scalloped or needle-shaped structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...